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W.R. BRECKON

Measurement and reconstruction in
electrical impedance tomography

I NlhD ITIU

In this paper we consider the inverse problem of Electrical Impedance

Tomography (EIT). In this medical imaging technique a pattern of current is

applied to the surface BV of the body fl and measurements of-the resulting

electric potential are made on OI. A survey of clinical application of this

technique can be found in Brown, Barber and Seagar [1] and comprehensive

information on various aspects of the technique in the proceedings [2] [3].

Mathematically the problem can be formulated as follows. Let 7 e Lr(g)

be the electrical conductivity, which satisfies 7(x) > c > 0 for (almost) all

x c 0. The potential u then satisfies

V.7Vu = 0

being a combination of Ohm's law and Kirchoff's current law. The current

density j on oV is given by

j =7VnU

where n is the outward unit normal on O(f. Where convenient we will use the

operator L = V.7V. To solve the equation L7u = 0 it is sufficient either to

specify the Neumann condition j (together with an additional condition on the

potential, such as u(p) = 0 for some p) or the Dirichlet conditions uJOa.

When one of the sufficient conditions is specified the other, or

complimentary, boundary condition is determined also for a given 7.

Whilst 0 is clearly a domain in R3 the case of R 2 is also considered.

The question of the possibility of identification of 7 from a knowledge of all

pairs (j,uIOR), that is the uniqueness of solution of the inverse problems,



has been considered by Kohn and Vogelius [4], who proved uniqueness for a

pieccwise analytic conductivity and Sylvester and Ulman [5] who proved the

same for ye go(a) -

We will consider two aspects of the inverse problem here We present a

suggestion for a system of optimal measurements and a linearisation approach

to the solution of the inverse problem. In the latter we present an example

to show that the linearised inverse problem is not the inversion of a

Generalised Radon Transform as some authors have assumed.

Two-norm optimal measurement

The ideal case considered by Kohn and Vogelius and by Sylvester and Uhlman

assume that we have a perfect set of measurements, that is all pairs (j,uOQ)

are known. This is equivalent to knowing the transfer impedance operator R

where RTj=ujag. If we consider the finite energy case u e H(fl) then

R :H-1/2-() -4 H1/2(do) is a pseudo differential operator which is compact and
70self adjdoint as a map H (M) -4 HO(OP). The mapping 7 - R7 is non-linear and

it is this mapping we seek to invert.

In practice we can only apply a finite number of current patterns and

measure voltage only at a finite number of points. The question arises:

Iwhich are the best measurements to make?
Isaacson [6] gives one answer to this question which he frames in terms of

a measure he calls distinguishability. If 71 and 72 are two conductivities

then they are distinguishable by measurements of precision e if there is a

current density jE HO(O) for which

6(j) = IIR71J-R72Jil/Ij[[I>E

the number 6(j) is called the distinguishability. The best currents in the

sense of Isaacson are those which maximise 6(j)
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6(j) = sUp IIft71J-R72j1I

= sup<j,D 2j>

where
D = R l-R7211 /2

The map D is a compact, self adjoint pseudo differential operator

lH OVf) 4 liO(82). It has a complete set of orthonormal eigen functions

jkEC(O), with eigen values A1A2,..., with Ak - 0 as k - w. From the

min-max principle one can deduce that the largest distinguishability possible

is A1 which is achieved when j is an eigen function with this eigen value.

Isaacson's algorithm for calculating this optimal current is based on the

power method (see for ,example [7]). We will take 71 to be the (unknown)

conductivity of the body and 72 as the best available guess for the

conductivity. The method is an iterative process which involves repeated

measurement and can be expressed as follows:

Guess j(O) (where Ijj(°)jj = 1)

Repeat

Apply j(n) and measure v(n) = R lj(n);,

Compute v-(n) = R72 j(n)

Set An : Ijv(n)'vN(n)II

Set j(n+l) = v(n).vN(n))/An

Until l j(n+l)-j(n) <E

The reasoning behind making repeated measurements of v rather than taking a

basis of currents and working with the resulting matrix for R71, is that the

measurement process involves error and so is not truly linear. lowever the

power method only produces the largest eigen function, which would give only

one measurement with which to estimate 71. It would be desirable to have a
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basis of currents at least spanning the same space as the eigen functionns Jk

with A k<E. For this reason it is desirable to have a procedure which

computes all the eigen functions jk with Ak>E. The following procedure has

been found to work in computer simulations with pseudo random noise in the

measurement stage.

Guess jl(O),j2-(0)  .. ,jm(0) (an orthonormal basis with Jil = 0)

Repeat

Measure vk(n) = R71Jk(n), compute Vk(n) = R72Jk(n) for all k

Compute rik = <jkvk(n)-V'v(n)>

Calculate the eigen system for R = {rlk], RU'= UA

Set S UkJI

Until [IR-AIIJ<

In numerical experiments little was gained after two iterations.

Point optimal currents

Isaacson's criterion for best currents gives the best currents only in the

sense of optimising the two norms of the voltage data measured for a given

current pattern. In practical systems each measurement of voltage is made

separately. It is of interest therefore to find a current pattern which

optimises the voltage difference at a point on 09 between bodies of

conductivity 71 and 72.

Let pE OQ be the point at which we make the measurment

v(p)-vN(p) = R71J)(p)-(R72J)(p). We seek a j such that

r(j) = Iv(p)-v-(p)I

is optimised subject to lJll = 1 and 0j = 0.

We can express the current pattern in terms of the eigen functions as

j = Zkjk .  The optimisation problem is then
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maximise akAkJk(P)

subject to ak2 = 1.

Using Lagrangian procedure we obtain

ak = CAkjk(p)

where

C = 1/(E(Akik(p))2).

The measurement procedure would then be first to calculate the eigen functions

using the method of the previous section then to make a measurement at p apply

the current

j = E CAkkJ(p)jk

to give the voltage v(p)-v-(p).

In the simple case 0 = {xER2:IxI<11 with 72 = 1,01 xJ<p
71(x) = { 'x>

the eigen values can be explicitly calculated as

2k 2kAk = -2 pk/k(l+ppk)

where a = (1-u)/(1+u) and the eigen functions are cos xO and sin kO.

A plot of the point optimal current for this case with p = 0 and various

values of p is shown in Fig 1. In the case of small objects in the centre

this procedure deviates least from that of Isaacson.
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Point Optimal Curent sigma = 0.300 r = 0.1 to 0.9.

Figure 1

Linearisation

The mapping 7 -4 R7 is non-linear. To solve the inverse problem it is

desirable to linearise this mapping. The original statement of the

linearisation appears in Calderon [8]. In this chapter Calderon's techniques

are used and elaborated upon to give linearised forms of the forward problem
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both in its-direct and integral form. Since the original reference is rather

hard to find it is hoped that this will help readers who have not yet located

a copy of this legendary Brazilian conference paper. Calderon's result is

extended to give a 'Neumann conditions constant' formulation. All published

reconstruction algorithms rely on some form of linearisation and yet the

approximations used are not always justified. With this in mind the subject

is treated in some detail here. We find, reassuringly, that they are all

simply the Frechet derivative of appropriately defined forward mappings.

If the conductivity 7 is perturbed to 7+67 and yet one form of sufficient

boundary data for u is kept constant, the complimentary boundary data will

change. For example, if a current density j is applied resulting in a

potential u, that is LTu = 0, with -7Vnu = jon OV, then when 7 is changed to

7+67, the potential u will change to u+6u, hence L7+67(u+bu) = 0 with

-(7+b7)Vn(u+bu) = j. The voltage difference on the boundary bulM will be

the data we measure in an attempt to detect this conductivity change so we

want a formula for 6u in terms of 67 (the reverse would be too optimistic!),

neglecting higher order terms in b7. This is achieved by writing 6u as a

series in 67 and truncating after the linear term. This series involves the

linear operators Lb, which depends on 67 in a linear way and G which is the
7

i.nverse of LT,(the G stands for Green's function of course). The

non-specialist reader, if daunted by manipulations of differential and

integral operators as though they were numbers, may like to think of them as

matrices, as they would be if we passed to some discrete approximation to the

operators.

CHOICE OF SPACE FOR 7

Standard elliptic theory, such as that presented in Gilbarg and Trudinger
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[[9], requires the coefficients of the partial differential equations to be in

L(0) which is a fairly weak assumption. To guarantee ellipticity of the

operator L we certainly need 7 to be bounded away from zero, 7 > c > 0

(almost everywhere). In the following results we will need to be able to

evaluate 1171011, that is we need to estimate the magnitude of the

conductivity on the boundary. In LV(IR) there is no natural restriction

mapping as OV is a set of measure zero. While L(0) contains extremely nasty

functions it has an extremely strong convergence criterion. We would

certainly be unwise to compare images on the basis of their L distance.

Natterer [10] suggests that the appropriate norms with which to compare

two dimensional images is H112. This space just fails to include the

characteristic functions of domains with sufficiently regular boundaries.

The weighting of high frequency terms (or if you like the inclusion of the

1/2th derivative) weights edges more strongly than the simple L2 norm and this

is consistent with the importance of edges in medical images. If we are to

, include continuous images in our space, then by the Sobolev Embedding Theorem

we must use Hs for s > 1. This is also sufficient to guarantee Ms C LP.

The requirement of this section, that of a bounded restriction mapping,

corresponds to the existence of a natural trace operator in Sobolev spaces.

In the space HS(fl) there is a natural trace operator HS(fl) - Hs'1/2(f). If

we require 71I, to be in H°(OV), then that too would point to using 7EHS(a)

for s greater than 1

DIRMT FORM

In this section the Frechet derivative of the potential as a function of

conductivity is calculated. First the inverse operators are defined as

follows:

D. H-11) H1(0)
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is the inverse of L :Ho(Q) - r-(fl). Since-the Dirichlet problem

LTu = s, ula=O
has a unique solution, G is well defined and the spaces have been chosen so

that the inverse is bounded. Similarly

G N: H- 1(0) -. HN (a)

solve

Lu=s, 7VnuO= 0, oJau

In addition we will need the mapping

G: I1/ 2(f) H nl(fl)
7

which solves the homogeneous Neumann problem
S=0, 7VnU = h, u 0

7Lfu

In estimating the norm of L7 which depends linearly on 7, the following

Lemma will be used.
1

Lemma 1.1 J.L7 1,11 -ll17l1 where S is either Ho or HN

Proof
IJI~wL~u I

IJLyuj IH-1(jj) :sup Ec1 il i

IJ Mw7vu.n-f 7vw.vul
SUPwES IfW I ' uI1wlIH 1

SUpw s(lVw.Vu)/I IWI IH1

<11711 IlulIlH
We are now ready to prove the following theorem:

Theorem If L m 0 and L,+b7(u+bu) = 0 and the Dirichlet or Neumann data

for u and u + 6u agree then

2L67u + Lbu = o(I167l1)

For the Neumann constant case we also have
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67V u + 7V.u =o(16712).

The forward mapping defined by F(7) = u (which solves a given Neumann or

Dirichlet problem) is Cz. For the Dirichlet case

~DFI(7)67 = -GDTL67 u

and the Neumann case
N _ B6n

F' (y)6'= -C Lb u - G 7V U

Proof

In all cases we have

L7+67(u+u) = LbTu + LTbu + L 7bu = 0

First consider the Dirichlet conditions constant tase buIg = 0.

Applying G = gives

(1+GD L 7)bu = -Lb7u

Formally

bu E j(-GLb7 )Ju
=1

which converges for 1IGL 7 I1 < 1. Using Lemma 1.1

IIOL b7II II0II1167I1
so convergence is achieved by requiring

-11711

(the norm used for linear operator 9 being the standard linear operator norm).

This constitutes a Taylor series for F, as L67 is linear in 67 the jth term is

homogeneous of order j in 67. In particular we have

DLF'(7)b7 = -G7 L u
7 6

and

L67u + L76u = o(f167112)

as claimed. It can readily be seen that F is C' as the higher derivatives

can be extracted from the Taylor series.
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In the N i m can we will treat the too cmp ts of

iS(g) = i() eS'lft(M) praty writing . 7, * Th= tur partial

derivaives cm be calculated separattly. I additim to the equatim

we hwe its bmdary equivaem

( 4y)Y3(u) = ,,.

To calculate W/00we am #I =

le houndary conditim amo reduces to Wal3 = 0 and the proof proceeds as

before with 6 = CP and we have

Is Z (-CL h)Ju
j=j

ad thus

I the other hand aWIDh, can be calculated by assuming that 7 = 0 in .

This leads to

and
yv36=& 3, 6av*6,.

The proof proceeds in a similar way to the interior case. Applying CB

= B _ 6- faVnu- Ya V bu) T

rearranging

(14G B67yaV3) u C C6,Y ap U.'Y ~ aDn

The series

bu = jl (-G 6aVn)Ju

converges for IIG ;7aVnl I< 1 which is ensured by IIallI < 1/(~IGli-IlVnIl)-

Thus we have the derivative
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and the rtsuIt

67;2v* 011 1 0167,1112)

From the chaim rule

'(7)Sr =-lL u - 0,hgF,,.

U The function cam be seem to be C* as the partial derivatives exist of all

order.

a

In the Dirichlet coustant case F is equal to its Taylor expansion in a

neighbourhood of 7 and is therefore an analytic mapping (this was pointed out

by Calderon using 7 = 1). (In the Neumann conditions constant case the proof

gives the slightly weaker result that F is an analytic in each component

separately). This indicates that the forward mapping could hardly be better

behaved; however it is the inverse of this mapping which is required for EIT

reconstruction and as we shall see that is not nearly as nice.

4

INTU TATI IA So=Z

The essektial result of section 3.4 is that to first order we can assume

V.7v6u = -V.6b7vu.

One interpretation of this is that the perturbed field 6u is 'caused' by a

distribution of current sources -V.67Vu. Equivalently one could say that

adding a source field s = V.67Vu would cancel the effect of changing the

5 conductivity by 67.

An interesting case to consider is to take b7 = 6 the dirac delta
p1

distribution at a point p. We will assume that u E C (R) and that p is not a

critical point, Vu(p) # 0. For simplicity we will take 7 = 1. The source
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tern is now -V6 p.V which is a dipole with dipole moment IVu(p)Joriented in

the direction of the current vector at p. The perturbation bu to first order

is then the electric field associated with the dipolee. The function 6ul

is the point response of the system (up to first order), in optics this would

be called the point spread function. In contrast to ideal optical systems

the response is position dependent falling off dramatically as p gets further

2from the boundary. The field from a dipole is asymptotically (2,U cos 8)/r

Here p is the dipole moment, r the distance from the dipole and 0 the angle

relative to the dipole orientation. In this case it = IVul which is at best

constant and typically decreases away from ait. Hence we find

II6ulaJlIH1/2 (,V = o(1/p2) where p = dist(p,oV). This means that the ability

of an EIT system to detect a small object of high conductivity contrast will

fall off at best proportionately to the inverse square of distance from the

boundary.

INrMRAL FORM

It is useful to reformulate the linearised problem in an integral form. In

Chapter 4 the finite element method will be used to represent the electric

potential and to solve the forward problem. In the finite element method

differential equations are formulated as variational problems, this is

equivalent to the weak form of the differential equation. Since this is

essentially an integral formulation it will be advantageous to express the

linearised conductivity-to-voltage mappin as an integral operator.

First notice that for any U with L U = 0 and any V (U and V in 11l(fl) say)
V. (UTVV) = 7VUVV

and so using the divergence theorem
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From above

Lb7u + L76u = o(167T112)

where Lu = L( +6 )(u+6u) = 0 and 7Vnu = (7+b7)Vnu. Choose any v with

Lw = 0 then

V.w(TV6u+67Vu) = 7Vw.V6u+67Vw.Vu+o(I 167112).
Applying the divergence theorem

fw(7Vnbu+b7Vnu) = f W.Vw6u+bcVw.Vu+o(1 167112)

Since Lw 0 we know that

fJu7vnw = JV6uVw

also, from the boundary conditions 7VbuVn + 67VuVn = o(1167112 the result is

6u7vw = -_Jf yVw.Vu + o(I117112).

Let us now consider the implications of this formula for the

reconstruction process. One has some initial estimate of the conductivity 7

and wishes to correct this using the best linear approximation. Some known

current patterns Ji are applied to the surface of the body 09. Measurements

of voltage ui are made between various electrodes. Since measurement is an

averaging process over the electrode we will assume that the measurements are

of the form

Vi,k = fouwk

where wk is characteristic of the geometry and electrical properties of the

electrode pair k. We have an a priori model of the body with conductivity 7

which we compare with the real body which has conductivity 7 + b7. The

discrepancy between the two is measured by the data

6Vi, = 6uwk

14
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We then solve the Neumann problem L~w = 0 subject to Vnwk =wk. To find a

linear approximation to the conductivity error 67 we solve the system of

linear equations

6Vik = -Jf67Vwk.Vui

In this formulation the Neumann conditions were kept constant. This is

the most useful formulation for impedance measurement for both theoretic and

practical reasons. For completeness we must compare this to the problem

investigated by Calderon in which the Dirichlet conditions were fixed and a

difference of Neumann conditions (that is boundary current densities)

measured. In this case the boundary conditions are j = -7Vnu and

6j = -6 (7Vnu) = bTVnu + 7Vn6U

assuming now that 6uld, = 0. This leads to the result

J wb(7nw) = Jfl7Vw.Vu + o(I167112)

which does not have the curious minus sign

Not a radon transform

It has been assumed by a number of authors (Schaumberg [11], Barber and Brown

[12], Vogelius and Santoza [13] that the mapping F:67 -4 6ulI can be

approximated by a Generalised Radon Transform (GRT), in the sense of Quinto

[14]. Schaumbert assumed that the fibres were the current streamlines

whereas Barber and Brown and Vogelius and Santoza assumed them to be the

equipotential lines (in the case R). Such GRTs are linear maps so it is

reasonable to compare them with the Frechet derivative F(7) which is in a

specific sense the best linear approximation.

Consider as before the unit disc. Take J = cos 0, y = 1. The solution

of the Neumann problem for Laplace's equation is clearly u(r,O) = r cos 9 or
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equivalent u(x,y) = x. If the perturbation 67 is circularly symmetric then
R

cos 0 will still be an eigen funtion of 1 + 67. For simplicity take
1 xj>P

7(~)= { / I
tIxl<p

then R7(px)cos 0 = Alcos 0 and 5u = 61'(O)cos 0 + o(16p12). Thus 6u has

support on oV- {r/2.3r/2}. If F'(1) were a CRT then the support of bu would

be contained in the 'shadow' of the set S = {x:lxl<p}, that is all the 0 E o9

such that Ye n S 0 0 where Y9 is the fibre through 0. It is clear that this

is not the case in this example either for the current streamlines

Y8= {(x,y):y=cos 0} nor for equipotential lines Y= {(xy):x=cos 01.

Reconstruction algorithms

Some of the reconstruction algorithms suggested by this work have been

implemented and numerical results are reported in Breckon and Pidcock {15].

We will only give brief details here. The general procedure is as follows.

Make an initial guess 7(0) to 7

Repeat

Choose current patterns J1 (n),2(n),. .,jm(n), possible using an

optimal procedure and make measurements 6Vik

Find a least squares solution to

bV A = -.[7Vwk.Vui for all k,i

Update 7(n+l) = 7(n) + 67

Until ik 

The linearised inverse problem is extremely ill posed as can be seen from

the singular values given in [16]. Consequently regularisation must be used

in solving the linear system. I~f only one iteration were used, the small

number of useful data values given by the optimal methods (i.e. only those
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which can distinguish 7(n) from 7) would be a severe problem. However in

both of the adaptive methods discussed new currents are found at each

iteration to distinguish best between what is really there and the latest

guess. The map R (n) = Rt will be completely different at each iteration

giving rise to completely different current patterns and voltage data. While

the data set measured at each iteration is typically smaller than that used by

non-adaptive methods, the information content of the data is maximised at each

step.
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S.R. CLOUDE

Polarisation in electromagnetic inverse
problems

ABSTRACT

With recent advances in measurement technology, full vector information is now

available from electromagnetic scattering experiments. This paper presents a

review of techniques developed for the inclusion of this vector information in

inverse scattering theory.

The magnetic field integral equation is used to develop three inverse

scattering models and to demonstrate the importance of full polarisation

information for 3D reconstruction. We also consider two other inversion

techniques, vector diffraction tomography and inverse boundary conditions, and

discuss the polarisation aspects of each.

1. INTRODUCTION

Very often the vector nature of electromagnetic waves is ignored in direct

scattering problems. Solutions are then formed for a complex scalar

wavefield satisfying the scalar Helmholtz equation. This approximation is

justified only when 2-dimensional problems are considered (in which case we

can treat TE and TM waves separately) or when paraxial solutions are adequate

and crosspolarisation is not of interest. A further advantage of adopting a

scalar approach is the unity it provides with acoustic scattering theory (see

Jones 1986).

For 3-D inverse problems however, this scalar approximation is neither

justified nor desirable. Measurement techniques have been developed (mainly

as a result of interest in frequency re-use in communications) to accurately
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measure vector field quantities (see the review by Cox 1981). Here, we

address the problem of how such information can be used to help in the

inversion process. This provides a great challenge to inverse scattering

theory; a complete inversion of the vector problem still evades us (see

Langenberg 1989) but many of the concepts required have been identified.

They involve advanced ideas from vector scattering theory, as well as such

unlikely elements as Lie algebra and group theory. While the subject is

still in the early stages of development, we present here a selective review

of techniques of use in the vector inverse problem. For the sake of brevity,

we concentrate only on those features which relate directly to polarisation of

the scattered field, leaving other details to the references. This may be

considered an update of a similar review published in 1981 by Boerner.

With this in mind we develop the paper in three main stages: first we

review the matrix algebra used to describe polarisation effects and consider

general symmetry properties of the scattered field which follow from generic

properties of the scatterer. These are important because they may be used to

impose global or local symmetry on the reconstruction. We then consider a

set of inversion techniques based on the magnetic field integral equation

(MFIE), with the high frequency physical optics and extended physical optics

theories as special limiting cases. In particular, we review the important

Kennaugh-Cosgriff inversion formula and show how we may add a polarisation

correction term (first derived by Bennet) to yield information on specular

point curvature. We then describe an exact inversion method based on the

MFIE and discuss polarisation aspects of two other inversion schemes; vector

diffraction tomography using the dyadic Greens function (Langenberg 1989) and

the inverse boundary condition method as developed by Imbriale and Mittra

(1970).

21



2 MATRIX FR IALISI

Under a far field assumption, we may write the vector scattered field as a

multiple convolution between the incident field and object impulse response as

e=S eN 0 <M,N 1 (1)

By a Fourier transform we obtain a 2x2 complex scattering matrix [S] at

angular frequency w as

E [S]. I (2)

where E and EI are spinor quantities representing the scattered and incident

electric fields respectively. The spinor nature of the electric field

follows from its transformation properties under a change of (complex)

orthogonal base states (see Cloude 1986). We may write such a transformation

as

E, [U2].F (3)

where [U2] is a 2x2 unitary matrix with unit determinant. We may interpret

this geometrically as a rotation in a real three-dimensional space by writing

[U2] as

[U2] = cos 0 " i sin 0 (X cos a + ay cos p + Zcos 7)

= exp(-iO[_.n]) (4)

representing a rotation of 20 about an axis specified by angles a, fl, 7. The

set z = (fO,oX,oy,UZ) are the Pauli matrices. From spinor algebra we know

that we may associate with (3) a spin matrix or quaternion

[X] = xO' + yuy + z' (5)

where the real 3 vector r = (x,y,z) maintains unit modulus under a

transformation

[X] = [U2] [X] [U2]+  (6)

or

r' [03].r (7)
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where [03] is a 3x3 real orthogonal matrix. The locus formed under unit

modulus is termed the Poincare sphere (see Born and Wolf 1965), which sits not

in physical space, but in an abstract polarisation space of the spinor E.

Many measurement systems operate by measuring the vector r rather than the

complex spinor E (Cloude 1989). The two are related by the spin matrix X as

x = x*- *

y = Re(EXEy*)

z = Im(EXEy*)

If we further define m = EXEX* + Ey* then g = (m,r) is called the Stokes

vector of the wave spinor and [X] = ma0 + r.o is called the wave coherency

matrix.

In scattering theory, we generalise the above by considering (2) as a

spinor transformation

[S] = det([S])[U] [H]

= d.exp[(- iOn+A).z] (8)

where [U] is 2x2 unitary and [HI], 2x2 hermitian (we shall assume for the

moment that det([S]) is nonzero, it becomes zero only for degenerate

scattering systems such as a linear dipole or helix). This transformation

corresponds to a combination of boost and rotation of the Stokes vector and

has 8 degrees of freedom; 2 direction vectors a and p lying in the space of

the vector r1 and 2 angles 6 and A. The direction vectors n and P figure

prominently in the theory of null polarisations as developed by Kennaugh (see

Kennaugh 1952 and Boerner "'1). He showed that for backscatter, [S] has two

orthogonal eigenstates and two copolar null states (where the incident wave is

scattered into an orthogonal state). Since these states display special

symmetries of the scattering volume they have been proposed as important

features in the inverse problem (Boerner 1981), but to date no successful use
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has been made of these null states, mainly because of the complexity of their

dynamics.

By using the Stokes vector g instead of the spinor E we may express (2)

and (8) in the form

g= [M]"gI (9)

where

[M] : Tr(f S g S+) = A-I-SS+A (10)

[M] is called the Mueller or Stokes reflection matrix, Tr stands for the trace

of the matrix and A is a 4x4 unitary matrix of the form

0 0 1 -
The~ mari [M isvry

The matrix [M] is very important in vector scattering theory; the key problem

in inverse scattering is to relate the elements of [M] to shape and material

4 properties of the scattering volume. We also note that the Stokes vector g

may also account for partially polarised waves where m2 > r.r. Such states

lie inside the Poincare sphere (with random polarisation at the origin).

This extra degree of freedom in g means that [M] is more general than [S], it

contains all the relative phase information of [S], together with information

on correlations between various elementary scattering mechanisms. To see

this we outline an alternative matrix formalism based on a 4x4 hermitian

covariance or coherency matrix (see Cloude 1986, 1989). The covariance

matrix [E] is related to mij, the elements of [M], by 16 Dirac matrices,

formed from direct products of the Pauli matrices as

31mji 'i 0fj (11)

The scattering coherency matrix [T] is based on complexification of the spin

matrix X and is related to [M] by a set of 16 traceless hermitian matrices
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as

=ij 4i*j (12)

where

-4 ij = a )i iA 3
The matrices [E) and [T) transform under a similarity transformation in'oving

a 4x4 unitary matrix [U4 ], representing a cbange in complex matrix basis for

the expansion of [S], i.e. if [S] = k.a then

kI = [U4 ].k (14)

and

ITI] [E4] It] [U4] (1-5)

where [T] = k.k . For example. we may determine the form of [S] under

bacscatrer when the object has N fold symetry in a plane perpendicular to

the line of sight. From reciprocit, it follows that [S] is symmetric. i.e.

SMV = SVH , [M] is symetric and T and E are 34 hernitian. Under a plane

rotation r. k becomes ' = L 4J.k where [U4] is given b,

0 0 01
cos2r -sin2T 0

0 in2T cos2r 0
0 0 1

Since k= 0 for backscatter it follows that for objects with N fold symmetry

(and N _3) [S] must have the form of a complex scalar, i.e.

[SI = k0 0 (16)

This is a simple example of what can be done by considering symmetry

properties of matrix descriptors (see Van de Hulst 1981 for further discussion

of symmetry constraints on [N]). We can generalise such arguments to

arbitrary unitary transformations of k, when we need to involve Lie algebra to

ascertain invariant features under elementary rotations. Further details may

be found in the references (Gloude 1986, 1989). We now turn to scattering
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thcor, in an atteapt to relate these matrix observables to shape and material

properties of the scattering volume.

3. ELEffCTREcNIC INMES SCATTUING

In this section we consider the problem of reconstruction of a

three-dimensional perfectly conducting body using the magnetic field integral

equation, the wave equation with inverse boundary conditions and vector

diffraction tomography. In particular, we show how full polarisation

information is needed for accurate reconstruction when the object has unequal

principal curvatures, and show how such curvature information is contained
w'ithin the elements of the Mueller matrix I].

V e begin with Maxwells equations in the time domain,

V x E(r,t) = -t 11(r,t)/6t

V x l(r,t) --E E(r,t)/6t + J(r,t)

V.11(r,t) = 0

where V.E(r,t) = p(r,t)/E

ll(r,t) = 11/i V x A(r,t)

and

A(r,t) = l/4x rV J(r',t-r)/R dV

By defining the total magnetic field as i11 = 1i + Ls and imposing the

boundary condition n x HT = Js, we obtain an integral equation (the MFIE) for

surface current Js as (see Poggio and Miller 1973)

Js(r,t) = 2n x Hi' + 1/2r n x J L(Js) x R ds (17)
s

where L is a differential operator

11
L = TcT-+ -
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Once the current is Anown, the scattered far field may be determined from

1 Js
Hs(rt) = T s - - x r ds (18)

We may write the IFIE (17) as the sum of three contributions:

!J(r,t) = 2n x H' + pl(r,t) + S (19)

where the first term represents the direct influence of the incident field,

the second represents a self patch contribution to the current and the third,

S, is an integral over other patches with currents evaluated at earlier times.

The factor p has been shown by Mieras and Bennet (1982) to be (Marx (1985)

derived a more general expression for the self patch term which reduces to the

Bennet/Mieras result for constant current across the patch)

1 A
p F x. (Ku- KV) (20)

where KU and KV are principal curvatures and AA is the area of the patch.

We may now derive inverse scattering identities by considering various

approximations to the surface current. In the simplest case we ignore the

self patch term and the integral S and consider only the forcing term. If we

,4 further assume the current to be zero on the shadow side of the object we

obtain the well-known physical optics assumption. The expression for the

scattered far field (18) then becomes

11s(r,t) = A 8 /8t (n x Ii) x r ds (21)

If we assume an incident impulse plane wave with E polarised in the x

direction and travelling in the positive z direction then the vector triple

product reduces to a simple area projection funtion which, when Fourier

transformed and integrated by parts, yields the following expression for the

impulse response (see Kennaugh and Moffat 1965)
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r2

1 d2A(ts )

rHs(rt) -2rc dt52  (22)

where A(ts) is the projected area funtion of the target, i.e. the cross

sectional area of the target in a plane perpendicular to the z axis,

delineated by a plane moving with a speed of one half light velocity. For

example, for axial incidence on a rotationally symmetric target A = rp2, where

p is the target contour function. This important result was first derived by

Kennaugh and Moffat in 1965 and has been used by several authors as the basis

for electromagnetic imaging (see Young 1976, Shubert 1977). Note that while

the early time impulse response is well approximated by this technique, late

time ringing due to damped current flow on the object is ignored (it is

contained in the integral S which we chose to ignore). This technique has

been extended to account for late time damping using GTD, moments of the

impulse response and phenomenological damping terms (Kennaugh and Moffat

1965).

The technique known as ramp response imaging (Young 1976) is based on

integrating the impulse response twice to yield a direct relationship between

a measured waveform and the area function A(ts). This has been used to

derive information on object cross-section as a function of distance along the

line of sight as well as object length and total volume (from the integral of

the ramp response). By using multiple looks, limiting contours have been

found for object shapes such as cubes and concentric cylinders. Note that

this time domain result is related to the well-known Bojarski identity by a

Fourier-Radon transform (as shown by Boerner 1978).

For our puposes we note that under physical optics there is no

depolarisation of the backscattered signal. However, this does not mean that
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there is zero depolarisation in the high frequency limit of the MFIE, as we

not only ignored the integral S but also the self patch term in deriving this

result. Since the latter is proportional to the radius of the self patch, we

might expect it to be of only second order importance (very often the self

patch term is ignored in numerical calculations using the MFIE). However,

this is not the case for general scattering bodies. When determining the

scattering matrix for the object, the self patch term makes an important

contribution to the phase difference between copolar terms, as well as

generating finite cross polar terms. In fact, the self patch term is only

zero for surfaces which have equal radii of curvature, such as a flat plate or

sphere.

If we assume the current over the self patch to be of constant magnitude

and equal to the physical optics current then we may write a better

approximation to the surface current as (Mieras and Bennet 1982, Bennet 1978)
J = 2n x Hi + E (K-K)(Ju - JV)/4 (23)

N N N u-V) PPOUN,-1OV/

where we have assumed a circular patch of radius E = ct-z and the unit vectors

u and v are aligned with the principal coordinate axes of the surface at the

point of interest. When we integrate this expression to obtain the scattered

field, the E factor yields a term proportional to the first instead of second

derivative of the area function. The final result for the impulse response

is of the form (see Foo 1984, Chaudhuri 1986, 1977)

1 62A KT KV Ar ~t T2 -- {(all.u)u - (all.v)v} (24)r vs(r,t) t 2N et2  4

where we have assumed a horizontally polarised incident magnetic field with

unit vector a,. We can now determine the elements of the scattering matrix

[S] as
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1 62A K Kv A

HH: 2 t 2  cos 2a (25)

SHv = 4x - sin 2a (26)

1 b2A KKV 6A

SVV -2 42  4 t co 2a (27)

where a is the angle between the wave coordinates and principal coordinates

for the specular point. If we expand this matrix in terms of the Pauli

matrices and then perform a Fourier transform with respect to ko, the free

space wavenumber, we obtain a complex vector k of the form

k = (ko2A(ko)/2r, A ikoA(ko)cos 2a, A ikoA(ko)sin 2a, 0) (28)

where A is the difference in curvature at the specular point and A(ko) is the

value of the Fourier transform of the area function at spatial wavenumber kO.

Note that A is real, so the second two elements are in phase quadrature with

the first. This implies that Sill, and SVV have equal magnitude. Their phase

difference, however, is directly related to the factor A. This means that we

can estimate curvature difference at the specular point by measurement of the

phase difference between copolar terms (measured at a wavelength much shorter

than body dimensions, see Chaudhuri 1986, Boerner 1981). Note we also have

information on the size of the object through the factor A(ko) and on local

orientation through the angle a.

We can avoid the need for coherent measurements (accurate phase

measurements are very difficult to achieve in practice) by calculating the

coherency and Mueller matrices. The three pieces of information A(ko), A and

a are then encoded in the diagonal elements of [M] as

k041A(ko)1 2 = 4r2Tr([M]) = 4r2 (moo+m11+m22 +m33 ) (29)
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A2  2kO2(no0- m33)/Tr([M]) (30)

ni m _+m2 -113
tan 2a= 00O 11"22" 33 (31)

n1O mUm 22- m33
The 12 off-diagonal terms of the Mueller matrix relate to correlations between

curvature difference A, amplitude weighting A(ko) and orientation a and hence

for single point scattering provide no extra target information. For complex

objects however (e.g. rough surfaces) these additional terms are useful for

assessing variation of surface topology.

The next logical stage is to include the whole MFIE in the determination

of surface current. Unfortunately we cannot then obtain analytical solutions

but must resort instead to numerical techniques. Nonetheless, Bennet (1981)

has used the full time domain MFIE for object reconstruction using two

numerical techniques, the first based on iteration using successive estimates

of the surface current and measured ramp response and a second based on a

straightforward extension of the time stepping procedure used in direct

scattering implementations of the MFIE. However, examples are only worked

for axial incidence on bodies of revolution where the area function may be

parameterised in terms of a contour function p and depolarisation does not

occur. Although extension to non-symmetrical bodies was attempted, this area

still remains to be fully investigated.

In summary, we have seen that we can obtain three inverse schemes based on

the MFIE, the first yielding the physical optics Kennaugh-Cosgriff formula

which is a time domain version of the Bojarski identity. We then saw that by

including the self patch term we obtained a polarisation dependent correction

to the inversion formula whereby, in the high frequency limit, the phase

difference between copolar terms is simply related to curvature difference and
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depolarisation is caused by misalignment of wave and surface coordinates.

Finally we saw how the full MFIE may be used for object reconstruction by

using numerical techniques akin to the time stepping procedures well known

from direct scattering applications of the MFIE.

3.1 Inverse boundary conditions and vector diffraction tomography

As an alternative to the MFIE formulation of electromagnetic inverse

scattering, Imbriale and Mittra (1970) devised a technique based on an inverse

boundary condition for the wave equation. Weston and Boerner (1969) showed

that this condition (namely that the total tangential electric field must be

zero at a surface of a perfect conductor) is sufficient to reconstruct the

object.

In this technique, complex measured data is required over an enclosing

sphere at one frequency. This data is then Fourier transformed to obtain

weighting coefficients in a Fourier expansion in terms of the angular variable

o. These coefficients are then used together with the appropriate Greens

function (a lHankel function for the 2-D problemr considered) to search for a

point at which the total field (i.e. incident plus scattered) is zero (or some

minimum if limited aspect data are obtained). The technique effectively

involves analytic continuation of the field up to the surface of the scatterer

and can be modified for concave bodies and multiple scattering (see Mittra

1973).

Unfortunately, although the technique is perfectly general and can in

principal be used for the three-dimensional case, only two-dimensional

examples have been published. Since 2-D problems can always be decoupled

into TE and TM waves, the significance of polarisation for the 3-D case has

not been clearly developed. Note that this technique is a point by point
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reconstruction and such tends to be computationally intensive. However, for

many applications only a limited number of surface points may be required and,

with the widespread availability of super computer power, this technique may

become feasible for low to intermediate frequency applications (the

Kennaugh-Cosgriff formula being more efficient for high frequency problems).

Ahluwalia and Boerner (1973) considered a generalisation of this technique to

lossy dielectric bodies and showed that, while uniqueness is no longer

assured, useful reconstructions can still be made, given limited a priori

target information.

The third technique of current interest for 3-D inverse scattering is that

based on a vector extension of linearised diffraction tomography (see

Langenberg 1989). In this technique, the vector Greens theorem is used to

obtain an electromagnetic version of the Porter-Borjarski integral equation

for a vector holographic field 0 as

0 = -2w JJJ Jc(Rw)G,(R-Rw)d3R (32)

Where G1 is the imaginary part of the vector Greens Function given by

G = (I+VV)g (33)

where I is the identity dyadic and g the scalar free space Greens function.

In order to invert the Porter-Bojarski formula we must perform two operations;

an inversion of the convolution (as in the scalar case) plus the added problem

of inversion of the dyadic Gi. The former can be handled by linearising,

assuming physical optics, and integrating with respect to the frequency

variable w. The latter, however, is difficult because the imaginary part of

the Greens dyadic has zero determinant (in far field scattering it effectively

projects 3-D fields onto a transverse plane). The result is that only

projections of the solution can be calculated, leading to two simultaneous
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scalar inversion integrals for a dyadic y, where 7(R) is the object singular

function which is related to the characteristic function considered in the

traditional scalar Bojarski theory. The net result is that differential

geometric manipulations are needed to obtain reconstructions using this vector

theory (see Langenberg 1989). The relationship between diffraction

tomography and the extended physical optics theory of Bennet has yet to be

evaluated.

A SUMMARY AND CONCLUSIONS

In this paper we have reviewed techniques of use in the-formulation of vector

inverse scattering problems. We have seen that matrix algebra may be used to

provide a formalism suitable for measurement and analysis of polarisation

problems and, in particular, that transformation properties of the matrix

descriptors may be used to establish symmetries of the scattering volume. We

have also seen a clear relationship between the coherent scattering matrix and

real Mueller matrix, with the latter providing information of correlation

properties in complicated scattering scenarios.

The magnetic field integral equation may be used to establish three

important inversion techniques by using three approximations for the surface

current. The importance of polarisation is clearly demonstrated by

considering the effect of the self patch term in the MFIE. It leads to a

simple but important relationship between the copolar phase difference and

surface curvature.

Other electromagnetic inverse techniques which show promise for 3D

inversion are those based on inverse boundary conditions and the point by

point reconstruction technique of Imbriale and Mittra and those using

manipulations of dyadic Greens functions in a generalisation of the Porter
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Bojarski integral equation.
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G. DASSIOS AND K. KIRIAKI

Size orientation and thickness identification
of an ellipsoidal shell

ABSTRACT

A confocal ellipsoidal shell of unknown semiaxes, orientation and thickness is

excited into secondary radiation by a plane harmonic wave at low-frequency.

The outer ellipsoid forms a penetrable surface while the inner one is a soft

ellipsoid. We show that one measurement of the leading low-frequency

approximation and six specific measurements of the next approximation for the

scattering cross-section are enough to determine the size, the orientation and

the shell thickness of the target.

1. INTRODUCTION

In a recent paper [4], the first author has developed a simple algorithm that

provides the size and the orientation of an unknown soft ellipsoid out of

seven measurements of the forward scattering amplitude. Actually, only six

measurements are necessary but the seventh one simplifies the algorithm

significantly. The method was based on the solution of the corresponding

direct problem [2]. Furthermore, the problem of acoustic scattering by a

soft ellipsoid coated by a penetrable confocal ellipsoidal shell has also been

solved in the low-frequency realm in [3]. The present paper aims towards the

development of an algorith that will provide the size, the orientation and the

shell thickness of a soft scatterer which is coated by a penetrable shell with

exterior boundary an ellipsoid possessing the same foci as the scatterer

itself. It is shown that knowledge of the first two low-frequency

approximations of the scattering cross-section for specific directions of
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iscidence are necessary to ideatify t1e scatterer cwpIelely. -gore

accurately. we aeed to kciv, the ahe of the leadig term for an2y directiom of

excitatiom ad the ralme of the secoa teCu for six specific directios of

excitation. For scalar scatteriz- fr. az ellipsoid one can look im [6,7,8).

Inverse scattering by an ellipsoid. from a copletey, different poiat of view,

is de-eloped is [1) -

2. MIE DIREff lMBLEI

Consider the confocal ellipsoids

Sa 2r 2~ 21 (

and

2 2
S b: -" 2 =I(2)

where a1>a2>a:3>O. b1>b2 b3>O.-

ibi, I = 1.2,3 and the sesi-interfocal distances hl, h2, 5h3, where

2 2 - b2 - b2

h2  a2 - a2  - b

3 1 '2 "1 2
Suppressing the harmonic time dependence 6-i' and assuming the incident plane

wave

= e ', (4)
the direct scattering problem at hand asks for the evaluation of a function

* (r) defined on the domain Ir between Sb and 5a and a function #+(r) defined
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on the exterior to Sa domain r which satisfy the following conditions. The

total field

#(E = #(!) + (), (5)

vhere U(r) is the scattered field, has to satisfy the Hlelmholtz equation with

.ar-e number k

(&:k2)#+( = O, r E V" (6)

while the inner field -(Q) has to satisfy the Helmholtz equation with a

different wave number K

(A0K)(r)=O. r E I. (7)

On the outer boundary Sa the boundary conditions

#+(Q)= t(), r E S a (8)

an#+Q) B ~n(,-(r), r E (9)

that secure penetration are to be satisfied, while the inner boundary Sb

consists of a soft boundary

-(r) = O, ESb (10)
The positive constant

+

B = -- (11)
p-

determines the ratio of the outer to the inner mass density. The ratio of

the bulk moduli of elasticity is given by

+ K2  2 (12)
- -B - =

where V stands for the relative index of refraction. For convenience we

introduce the parameters

B B - 1 (13)

C= ,2 -1 (14)
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which imply

V2 0+1

Finally, the scattered field U(r) should satisfy the Sommerfeld radiation

condition at infinity.

The low-frequency analysis of this scattering problem can be found in [3].

In particular the leading two low-frequency coefficients of the scattering

cross- section are provided by

1+2 1F 11+1 2 k

o- 4[] + 4rkT - jw]1i0 Ok) (16)

where

B I bn~n ®Dxn (17)
n=1

I1(a 1 +0)d (18)
0J 1) -2  x~2  2

1 2 jx+a3

Ii(b 1  +Dd (19)
2 2) 2b2

0 x+b1j xZ b2

1 dx

1' 22' xa~ ~ 2  2 2 n 1,2,3 (0

1 +a2  +a'

1 '+00 dx

2nbi 2 - n =1,2,3 (21)
/ 2 2 20 X+bn x+b, x+b2  x+b3
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1 1 +dx
1O(P) 2 22 2 xa a2  (22)

pa ~ 1  2 3

1o = B 1 o(a,) + Iio(b 1) (23)

and

C(B+l) 1 B(B+1) 2  1
T r11) I (p)dv + (1I) 'b I(p)dp

(a 2 b 2) (B+I) +C+
6(,03 [[ 12(B+1) 2+3(C+l ) (B+4)- B  T]Jlo(al)-(B+2)R'- Ilo(bl) ]

B+1 4  2C(B+1)
-T. 3(110)2 (a a2a3-blb 2  I'(bl)  (24)

2C(B+l) 2 ala~ a2_ b 21
2aB11 1 f 1 1

I(1) [l(al)" lo(bl)] lo(al).- - [(2B+1) (B+1)- I (C1

3(110) 3 0 3(ll)[ ) ) 1(+)
222 222

2(b 1 +b2+b (B+1) B+1b2+b2

+ 23(110)3 [(B2+2B-C)Io(a)+(+1)Ilo(b,)]- [-a 9

3 4 nia)2(B+1) 3 A 3 4 n +2
[( Yl bn41"(bl)+(B 2 B- ) E%(anI1

3(110)3 n=1 n1n=1

The expression for T involves only the two parameters B, C and the six
N

semiaxes a1 , a2, a3, bl, b2, b3. Furthermore, the dyadic B corresponds to an

ellipsoid which is reciprocal to (2).

42



3. THE INVERSE PIWBLEi

The inverse problem we consider here asks for the determination of the

semiaxes a,, a2, a3, b,, b2, b3 which specify the size and the thickness, and

the three Euler angles , 9, y that provide the orientation of the scatterer.

The form of (16) indicates that it is possible to use the method developed in

[4] to solve the present problem as well. The only difference is due to the

ellipsoidal shell that coats the soft scatterer, i.e. we need to determine bl,

b2 , b3 and 0, 9, y as in [4], as well as the semiaxes a,, a2 , a3 .

Nevertheless, because of the confocality of Sa and Sb, relations (3) can be

used to determine a1, a2, in terms of a3 as

a2 = 2 +2 _ 2(5
a1 =b1 a3- b3 (5

2 2 2 2

Consequently, we only need to determine bl, b2, b3, a3 and 0, 0, y.

An expression that related a3 with bl, b2, b3 can be obtained by a single

measurement m0 of the leading approximation of g.

Indeed, if

2B+12

mo = 4r (27)

then, in view of (18), (19) and (23) we obtain

dx

0 (222+ x(2 b22 x+a2
+(1-b)a xb 2-b3)+3  3

+oo dx
= 4(B+1) Im (28)

,x+b1 /x+b2  x+b3
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which furnishes a3 as a function of bl, b2, b3

a3 = a3(bl, b2, b3 ). (29)

The existence of the function (29) is secured from the implicit function

theorem with the help of the relation [2]

1 1 (30)

which connects the corresponding elliptic integrals.

Following the procedure described in [4] we excite the scatterer from the

six directions

k1,' k ~
2 "3

xl'+x2'

, x'+x'' _ (31)

5-

k'6- 4

of an arbitrary coordinate system indicated with primed variables. If we

denote by x1 , x2, x3 the coordinate system that fits the principal axes of the
N

target ellipsoid then there exists an orthogonal dyadic P such that

r = P.r' (32)

where the components of P are known trigonometric functions [4] of the three

unknown Euler angles 0, 0, y.

Let
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r T -1 B+l 2

Mi = - ] i.B.i (33)

be the measured values of the second approximation of the scattering

cross-section whenever the direction of excitation is given by ki,

i = 1,2,3,4,5,6. A series of calculations similar to those in [4] leads to

the dyadic equation

12rT Aj #V
B - I =P.M.P* (34)

n0IV
N N N

where I is the idemfactor, P* is the adjoint to P dyadic and

M= [-2mro-2m  lxl @ xl " 2m2x2  x2 - 2m3x3  x3

+ (m1 +M2-2m4) (x1 0 X2+x2 ® x1)

(m2+m3-2m5) ( 2  ® "3 ®) @2)
j ^N (35)(m3 ml" 2m6)(x.3 @ Xl+Xl x,)3) ]  (5

is the dyadic of measurements.

Since M is a real symmetric dyadic its normal form involves three real

eigenvalues and an orthogonal set of eigenvectors.
N N

By virtue of (34), the eigenvectors of M form the dyadic P while its

eigenvalues Ai, A2, A3 are given by

n =b2 - 12 n = 1,.'.3. (36)

Hence the square of the three semiaxes of the core of the scatterer are

provided by

12T
b2= An + - n = 1,2,3. (37)S'n m 0 )

In view of (29) T is a function of bl, b2 and b3. Therefore, (37) forms a

highly non-linear system of three equations for the three unknowns bl, b2, b3.

Once a numerical scheme furnishes the value of b,, b2 and b3, Formula (29)
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provides a3 and (25), (26) give the values of a1 and a2. This procedure

identifies the size of the scatterer and the thickness of its core. The

Euler angles that give the orientation as well are obtained from the knowledge
N

of the dyadic P exactly the same way as in [4].

We mention here that if the size and the orientation of the exterior

ellipsoid are known, then a single measurement of the leading term of the

scattering cross-section sufficies to identify the size of the core ellipsoid

[5]. This procedure, which forms a nondistructive method of evaluating the

size of the interior ellipsoid, is based on the Rayleigh approximation of a

soft ellipsoid

2
" _ 4 ___-_---- (38)

(Io(a1)

and the corresponding approximation

B+1 2

g -4 []O (39)

given by (16).

Eliminating 1(al) between (38) and (39) we obtain the relation
1 B+l B]

l (bl) = 2jf, I , (40)

which, for known a and ', can be solved numerically to obtain b3 and then b1

and b2 from

b=h2 + 2 (41)
1 h2  3

b=h2 + 2 (42)2 = 1  3

as long as h2 and h3 are known from the knowledge of a1, a2, a3.
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G. DASSIOS, K. KIRIAKI AND V. KOSTOPOULOS

Inverse thermoelastic Rayleigh scattering
by a rigid ellipsoid

ABSTRACT

In this paper the inverse scattering problem for the rigid ellipsoid in linear

thermoelasticity is examined. We prove that six measurements of the far

field pattern in the low-frequency region are necessary in order to evaluate

the semiaxes of the ellipsoid as well as to fix the position of its principal

axes.

1. INTRODUCTION

The inverse scattering problem, as it is well known, is concerned with the

problem of determining the shape and/or the physical properties of the

scattering object from the knowledge of the scattered far-field data.

The mathematical methods used to investigate the inverse, as well as the

direct, scattering problems depend heavily on the frequency of the incident

wave [11,12].

In the low-frequency region there is the problem that low frequency data

does not provide enough information for a sharp resolution of the scattering

surface and the optimisation procedure requires a direct scattering problem to

be solved at each step of the iterative scheme for arriving at a solution.

In low frequencies Angell and Kleinman [1] described a method for finding the

dimensions and orientation of an ellipsoid from a constrained optimisation

problem for a functional defined in terms of the polarisability tensor

elements associated with the object. Dassios [5] solved the inverse

scattering problem for the acoustical soft ellipsoid based on the informations
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which the direct problem provides in the radiation region. The inverse

scattering problem in linear elasticity was examined in [2].

In addressing oneself to the practical problem of reconstructing the shape

of an obstacle from far-field data, one is faced with problems of numerical

instability. The inverse scattering problem in general is ill-posed, in the

sense of Hadamard, and intrinsically nonlinear. So, the aim of the provided

methods for solving inverse scattering problems is to be relatively easy in

numerical implementation. A survey of the research done in this area can be

found in [3,4,13].

The inverse scattering problem which is considered in this paper is to

determine the semiaxes and to fix the orientation of a rigid ellipsoidal

scatterer embedded in an infinite, homogeneous, isotropic thermoelastic medium

from the knowledge of the far-field data, in a finite number of directions.

In Section 2 we formulate the direct scattering problem and we give the

necessary results obtained in [7,8].

In Section 3 we examine the inverse scattering problem for a rigid

ellipsoid in linear thermoelasticity. We shw that the necessary

measurements in order to obtain all the information needed about the

ellipsoidal scatterer are six. This is a consequence of the simp]icity of

the expressions for the leading term of the angular scattering amplitudes in

low-frequency regions that allows for an exact solution of the corresponding

inverse problem. The nonlinearity of the problem, expected for inverse

problems, enters via the elliptic integrals, the second power of the values of

the semiaxes and the quadratic expressions of the components of the directions

of incidence.

Finally, in Section 4 remarks for the stability of the numerical method

and a general discussion concerning our approach are presented.
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2. FORMULATION OF THE DIRECT SCATTERING PROBLEM

Let us assume that thesolid ellipsoid
2

3 xi

i
S- < , Oa3a2<al<+ (1)

i=i i

is embedded in an infinite, homogeneous and isotropic tlermoelastic medium.

The isotropic thermoelastic material is characterised by the Lame

constants A,p, the mass density p the coefficient of thermal diffusivity x,

and the linear expansion coefficient a. The unified four-dimensional field

D = (ul(:), u2(1), u3(1), 8(1)), (2)

where u(r) denotes the displacement and 8(1) the temperature field, specifies

the stationary thermoelastic state of the medium whenever it belongs to the

kernel of the time-independent Biot operator

(A + P )I3 + (A+P)VV -7V1
L(ar) [qxyV - A+q (3)

In the above expression, 7 and n are coupling constants,

iWL
q -(4)

is the thermal analogue of the square of the wavenumber, o stands for the

angular frequency, which is suppressed through the harmonic dependence e i t

and In denotes the unit dyadic in n-dimensions. A convenient dimensionless

coupling constant is provided by the parameter
77fl

In the limit as 7 -4 0+, n -1 0+, e -4 0+ the thermoelastic problem decouples to

the corresponding scattering problem in the classical theory of elasticity and

an independent heat conduction problem.

A general incident plane wave propagating in the direction k has the form

[7]
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where =()1(1) + §2(1) + 43(1) (6)
where

= A( -)e 1 - (7)

is the elastothermal plane wave of amplitude A1.

_'j: = A2(k4 i e ik2k.r (8)
2(r) A(ik2fl2k,ik2)eik2 '

is the thermoelastic plane wave of amplitude A2, and
ŝ   iksk'r

,s(,) = A ( ,O)e (9)

is the transverse plane wave of amplitude As and polarisation along the

direction b, orthogonal to the direction of propagation k. The factor ik2 in

(8) has been added in order to secure analyticity of §2 with respect to the

wave number. The amplitudes Al and As have dimensions of length, while A2

has dimensions of length times temperature.

In consistency with physical reality, the wavenumbers kj, k2 are chosen to

be those roots of the characteristic systems [7]

k1+ k = q(l+c) + k 1
2 2 k2 (10)

k1k 2  qp
for which Imki > 0, i = 1,2. These conditions reflect the dissipative

character of the thermoelastic medium. The constants

Pl =  2 '(11)
kl-q

ik 27

P2 =  k2 k2 (12)
(p- 2) (A+2,u)

furnish the appropriate factor in order for _
1 and 2 to belong to the kernel

of L. On the other hand, as e - 0+, fl 0 and 92 0 and the system
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decomles im a zataral ay.

Im classical elasticity, ve kave the -ave relatioas

c= k1,cp = ksc (13
where kp amd ks denote the waveauibers of the elastic lougitudiNal ad

transverse i-es, and
c2 A+2r 2 P (14)

specify the corresponding phase velocities.

In therwelasticity, we denote the complex 'arenmnbers k and k: by

k =- idl: % > 0- d > 0

(15)

k-, i 2  v2>0. d2 >0

where vj. v2 are the phase velocities of the elastothernal and thermoelastic

waves. respectively, and d, d2 determine the corresponding dissipation

coefficient. In the decoupled case, as

C-i 0+

k1 -k p1 (16)

k2  q = (I+i) j-'

The general scattered field U has a corresponding decomposition into

elastothermal, thermoelastic and transverse parts via the relations

n_(I:) = ,1(r) + 112() + s() (17)

(r) =1(r+ 8 2() -2 W

A set of ten asymptotic relations given by Xupradze express the radiation

conditions which secure the well-posedness of our scattering problem.

The unified total field is expressed through

!(r) = !(r) + (r) (18)

The boundary conditions for the rigid ellipsoid in thermoelasticity are
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described by

nM(ar,n)j(r) = g, K E S, k = 1.2, (9)

where the boundary differential operators Bk are expressed as follows:

(i) For the rigid ellipsoid at zero temperature

1 3 __o 
(20)

(ii) For the theraly insulated rigid ellipsoid

e 2( r, 1 ) = . . ..n- (2 1 )

n being the outward unit normal. The integral postulation of the above

problem is presented in [7]. The far-field behaviour of the scattered

j elastic and thermal fields have been studied in [7] where the following six

j normalised scattering amplitudes have been introduced.

As r + w', the following asymptotic forms hold true

0- 2)]
(1) = e r[gr(,I)h( 1 r)r + O(r2)] (22)

-d2rr. 0 )

2 = e [g (r,I)h(+ O(r- (23)

,,_s(;) :[gsi,i)_ + gs(L )+](- s r)r+ r( (24)

-d1rr 1 w + o 21

81(r) = e e(r,k)h(l + 0()] (25)
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62 1) -dory (-0 
-)

2 d)h(e r)r+ r (26)
v2

where 4, a = 1,2 define the radial elastothernal (for m = 1) and the radial

thermoelastic (for a = 2) norualised scattering amplitude, g , a = 0, define

the angular normalised scattering amplitudes, and im, m = 1,2 define the

corresponding thermal normalised scattering amplitudes for the elastothermal

and thermoelastic waves respectively. The analytic expressions of the

thermoelastic scattering amplitudes are given in [7].

In the theory of thermoelasticity, where the existence of dissipation

manifests itself via the nonvanishing imaginary parts of the wavenumbers k1

and k2, the unit of energy, which enters the definition of the scattering

cross-section, is not any longer invariant under translations in the direction

of propagation.

This is the reason for introducing in [7] a local determination of the

scattering cross-section which in general has the form
11 + 22 ^  + s " + 12

esc(k) es()+esc()+esc(Y)+esc(Y)

a e. = +e22+e ss +e12  (27)

in in in in

where ell is the part of the unit of energy that corresponds to the

elastothermal incident wave,
22

ei2 is the part of the unit energy that corresponds to the thermoelastic

incident wave,

ein is the part of the unit energy that corresponds to the transversein
incident wave,

e is the part of the unit of energy that corresponds to thein
interaction between the elastothermal and thermoelastic incident

waves,
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11 2 U 12

and e 22 ss 12 describe the corresponding parts of the energy of the

scattered wave.

From the analytical expressions of the above quantities, given in [7], it

is easy to observe that only the terms ess, em are independent of r, while

all the other quantities die out as r -i +®. Therefore, the quantities

ell 1, ec22 en22 e12 and e12 play no leading role in the definition of the
esc,'in, e5c ei, s en
scattering cross-section, which, as r -i +w, has the asymptotic form

e0(k 1 -- J_ s(' dg2 (28)

es k2(As) [r 9( I + g (:-ein

In other words, the scattering cross-section is measured, to a first

approximation, by the only nondissipative part of the incident and scattered

wave which survives far away from the scattering region, i.e. the transverse

part.

For the above equivalent thermoelastic scattering cross-section a css

an angular type scattering theorem as in classical elasticity [10] is

obtained, from which we have the scattering relation

S k2 - b (.O)Reg(,k) + (l. )feg (kk) (29)

In low-frequency region the leading terms of the angular thermoelastic

scattering amplitudes for the two problems that will be examined in this paper

are given by [8]
s ik ^ ,or ~ 2

f =- . II (f) ds(') + 0(k2), k -4 +0, a = 0,0 (30)

where for the case of a rigid ellipsoid u is the solution of the following

boundary value problem

T PAu 0 (r) + (1-,r p)VV-Ii0(r = q, p > 01  (31)

RO() = , P a1  (32)
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Uo(r) = (A1 + A2 2 )k + A6 + 0(), p +0 (33)

which can be solved by introducing a fictitious potential in the Papkovich

representation and then use the freedom it provides to decompose the general

boundary condition into two simpler ones. Following the method introduced in

[6] we obtain, after very long calculations, the solution

u0(r) =[(A' + A273)k + Asb]

*m=1[ (- 1) 1-( 1

2 2

1 (r(_1) [(A'+Aemil (+Asj]

x r

-m @ -m r
22 2 2 2 m 2 1 (34)m=1 (P -a,+%)[(r p- 1) a I-(p o

where

+, du
Io( = p =2 22 (35)

I (p): [ 1 °  du(36)p (u2  2 2 u2  22  22  2

-a1+am) 2 1 3
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I I~Qr1), Im IM(a,), m =1,2,3 (37)

j and p is the outward unit normal on the ellipsoid.

The expressions of the scattering amplitudes involve the integral

Tp 0() s r

where

T 110(j) = 2pup.Vu0 (r:) + ApV.110(1r) + ppx(Vxu 0 (1)) (38)

provides the traction field on the surface of the ellipsoid. In view of the

potential integral

fp ~ds4r(9
p=a, /21  P 2V2

and a series of vector and dyadic calculations we obtain

3 (A +A 2fl2 )km+A Sbm

J T il0(Ir)ds(xr) = -8ri- m=1 (T 2_l)a 2 Im (. 2)1 f'm (40)

Introducing (40) into Eq. (30) we conclude that the angular amplitudes assume

the form

3 [(A +A 2 P22)km+Abm] 2
gs(li,k) =2ik E 2 1 0 ~)~(k) (41)

3 [(A +A 2 2)km+Asbm]2

gs(lr,k) = 2ik E 2 2 m 2 1 (A~xm) + 0(k)2 (42)

So from Eq. (28) by substitution of the angular scattering amplitudes and

supposing only S- wave incidence we conclude that

a ss - E2 "I.21~ 2 (43)
3 m=1 (1nJ
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where h = (blb 2 ,b3), 1.k = 0 and

n 2 2n( a ) (r2+1 )I1 (a,) n = 1,2,3 (44)

3. TIE INVERSE SCAT ERING PROBLEM

We assume that the directions of the principal axes of the ellipsoid described

by Eq. (1) coincide with the unit vectors xi of the orthogonal cartesian

system.

-We choose six arbitrary directions of incidence of transverse waves.

This choice of S-waves is dictated by the above discussion about the

dissipation of all but es and ess in the far field region.in st

In the sequel we will see why six measurements are enough to specify the

three semiaxes as well as the three Euler angles that fix the position of the

principal axes of the ellipsoid.

For S-incidence along the k-direction we can evaluate the angular

thermoelastic scattering amplitudes, so that Eqs. (28, 29, 43) provide the

thermoelastic scattering cross-section.

Let the six arbitrary directions of incidence be

_j = j, j = 1,2,3

' =1 (xj+x )
-4 = - (4+x')

1 - (45)k,6 - 1 1, - _+j

where {4~, ,_ } form an orthonormal set of an arbitrarily chosen cartesian
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system whose origin coincides with the centroid of the ellipsoid. In the

sequel with primes we will refer to the arbitrarily chosen system and without

primes to the system determined by the principal axes of the ellipsoid.

Let P be the orthogonal matrix that transforms (by rotation) the system

xj,, to the system x1,'2,23 which determines the principal directions of

the ellipsoid, that is we have the relation
IV

r = Pr'. (46)

The knowledge of the matrix P will provide the orientation of the ellipsoid.

The elements Pij of P are expressed via the three Euler angles , , y by the

relations

P11 = cos q cos y - cos 0 sin q sin y

P12 = sin cos y + cos 0 cos q sin y

P13 = sin 0 sin y

P21 = -cos sin y - cos 0 sin cos y

P22 =-sin q sin y +cos 0 cos cosy (47)

P23 = sin 0 cos y

P31 = sin 0 sin

P32 = -sin 0 cos

P33 = cos 0

Since the relation (43) is referred to the principal axes system it follows

that (43) holds true after the transformation described by the matrix P, has

been applied to the directions of polarisation b', that is

b. = PM j = 1,...,6 (48)J- .)

So, the six measurements, in view of Eq. (43), yield

32 r r T -
m=-(j) A bj j = 1,...,6 (49)
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where

Aik =O, iO k

(50)

1 i = k =1,2,3Aik = j-T
Lo

From Eqs. (48, 49) we conclude that

32r
mj = --- ()pA P (51)

Substituting Eq. (45) in Eq. (51) we obtain the following system of equations

for the unknown quantities 0,0,y,aj,a2,a3
P2  3m.

3 niE n - 32r I i = 1,2,3

n=1 L0

(52)

3 (Pni+Pnj)2  3mk
n = 16 (ij,k) = {(1,2,4),(2,3,5),(3,1,6))n= L0

From Eqs. (52) we conclude that

3 PniPnj 3(2mk-mi-mj)
E - 32r (53)

n=1 L'

where (ij,k) as in Eq. (52).

So, we have the matrix relation

PT A P = M (54)

where M is a real symmetric matrix with known, from the six measurements,

elements given by the relations

3m
Mii = 167 i = 1,2,3,

(55)
3(2mk-mi-mj)

Mij = Mji 32r
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(ij,k) as in Eq. (52).

From Eq. (54) we conclude that

A P M~ Pj~ (56)
t N p

Since P is an orthogonal matrix, M is a real symmetric one, and A, from Eq.

(50), is a diagonal matrix it follows that the eigenvalues of M are given by
1

An = -, n = 1,2,3 (57)

0

while the columns of PT are the corresponding orthonormal eigenvectors. So,
N

the eigenvectors of the known matrix M specify the orientation of the

ellipsoid. In order to evaluate the semiaxes of the ellipsoid we apply the

following procedure.

From Eq. (57) we have that

1
L = -, n = 1,2,3 (58)

n
From Eq. (44) and the well-known formula

3 2n 1Ean = Io
n=1 n 1 0

which relates the elliptic integrals we derive that

1 3 1
I°(al) j-(p2 E M  (59)

2(r+2) n=1 nR

From Eqs. (44, 57) we conclude that

1 1 r2+1 3 1
anll(a,)- (r2 1) n - p2 i i Mnl, n = 1,2,3 (60)

n 2(r p+2)i1 i

where Mo, Mn are known quantities.

In order to bring the elliptic integral I' to its canonical form we
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perform the transformation

x - 2 a1 (61)

and we conclude in standard notation of elliptic integrals that

1 a2a2)_l 2  sin 0  dt
0 ( 1 ao1t 2 2

= -(a,-a )" 12F(Oo,ao) (62)

where
o=si-1 __2 _

1 3

00 =sin 2_

(63)
a2_a

1 2

In order to bring the elliptic integral of the second kind In to its canonical

form E(¢o,a 0), we perform the same as above transformation, while for the

integrai I e

intgra I~weconclude

sin~so t2dt

Jo j .t2 71_t2si2ao -(a -  )3 2  (a ) 64

Finally after some algebraic calculations we conclude thiat

I( 1) 3a~~ I sin2ao[(o'o'F 'a)  (65)

If we introduce the notation

a2  a3

si1  F : , s (66)

1 1

use the relations
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31E In
n=l 1 ala2 a3

n =

3 2 1

n=1

and the equations (62) and (64) we conclude the relations

22 2
s1s 2M1 + 2M2+ M3  3(1sy/Fq0 a)= Mi  (67)

= A1 (known quantity) (68)

where in view of (66)
00 = sin-lls2 

) 1/2

(69)

1-s2

ao = sin-l(T1
1 / 2

1~2

In order to solve numerically the nonlinear system given by equations (67, 68)

we use the same iterative scheme as in [2].

4. DISCUSSION

In this paper the inverse scattering problem of linear thermoelasticity for a

rigid ellipsoid in the low frequency region is examined. We use information

from the solution of the direct thermoelastic scattering problem and propose a

method for the corresponding inverse.

In order to evaluate the dimensional characteristics and the orientation

of the scatterer we need six measurements of the far-field data in the

4 64
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low-frequency region under the condition that we have a knowledge of the shape

and the boundary a priori conditions. This type of approach of the inverse

problem has been proposed in [5]. With a similar technique the scattering

problem in linear elasticity has been solved in [2].

If the boundary conditions on the surface of the scatterer alter the above

approach c~n also be used. Obviously from the solution of the direct problem

we obtain a highly nonlinear system which cannot be solved by a simple and

rapidly convergent iterative scheme.

Looking closer at the results contained in this work, one can see no basic

difference if we consider a thermally insulated rigid scatterer or a rigid

scatterer at zero temperature. In other words, the results are independent

of the temperature boundary condition on the surfac( of the rigid scatterer.

This is a reflection of the fact that thermal effects do not enter the

Rayleigh approximation of the transverse field in the radiation zone.

The corresponding temperature field appeared in the low-frequency

approximations of order higher than the leading one. Even in these higher

order approximations the dependence on the temperature is implicit through its

effects on the particular form of the displacement field.
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A. FARIDANI

Reconstructing from efficiently sampled
data in parallel-beam computed
tomography
1. JNhM II

In conputed tomograpky (CI) an object is exposed to radiation which is

measured after passing throqgh this object. From these measurements a

certain function f, characterizing the interaction of the object with the

radiation is reconstructed. This function represents an 'inage' of the

interior of the object.

In diagnostic radiology, the classical application of fI, X-rays are used

as radiation. The measurements are then line integrals of the X-ray

absorption coefficient f. This leads to the mathematical problem of

reconstructing a function from its line integrals. In two dimensions this

seans the inversion of the Radon transfor.

In this paper we examine how many line integrals have to be measured in

order to achieve a certain accuracy and resolution. We confine our

investigation to the so-called parallel-beam sampling geometry. First we

describe the application of multidimensional sampling theory to sampling the

two-dimensional Radon transform. This approach was first taken by Lindgren

and Rattey [11, 16] and further developed by Natterer [12]. It leads to

sampling schemes which need a minimal amount of data to ensure that the Radon

transform Rf is determined by the measured values up to a small error.

The question of how to achieve good reconstructions from such data has

been studied by Kruse [9] who obtained error estimates for the filtered

backprojection algorithm, the most popular reconstruction method. The main

purpose of this paper is to derive estimates extending Kruse's results and to
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use this theory to obtain improved reconstructions. The paper is organized

as follows:

In the remainder of this section we give a brief description of the Radon

transform and its inversion. In the next section we derive a version of

Petersen and liddleton's sampling theorem [14j suitable for sampling functions

defined on [0,2r]n  X R2 Our proof differs from the approach taken in [12

p.64] and is based on a Poisson sumation formula derived in [9].

Furthermore we characterize the class of sampling schemes to which the

sampling theorem is applicable and which are suitable for sampling the

two-dimensional Radon transform in practical applications. We call these

schemes 'admissible sampling lattices'. Application of the sampling theorem

leads to sampling conditions which have to be satisfied by a sampling scheme.

The results of [11, 12, 16] for the usually employed standard lattice and the

so-called 'interlaced lattice' are derived. The interlaced lattice, first

suggested for sampling the Radon transform by Cormack [2], requires a minimal

amount of data. Sampling conditions for the standard lattice were already

derived in different ways by Bracewell [1], and by Crowther, De Rosier and

Klug [3].

To clarify the question of accuracy of reconstructions, we give a detailed

error analysis for a particular reconstruction method, the filtered

backprojection algorithm. In section 3 we describe the implementation of the

algorithm for data sampled on an admissible sampling lattice. In the

following section we derive estimates for the reconstruction error. We

extend the results of [9] by taking into account the influence of a certain

interpolation step occuring in the algorithm. This interpolation was

neglected in [9]. It turns out that it is critical when the interlaced
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lattice is used, but that good reconstructions can be achieved with a sensible

choice of the parameters of the algorithm.

The proof of the estimates already derived by Kruse is closely related to

the proof of the sampling theorem given in section 2. This indicates that

the filtered backprojection algorithm might be more suitable than other

reconstruction methods when minimal sampling schemes like the interlaced

lattice are used.

The last section is devoted to numerical experiments and their discussion

in the light of the results of section 4. It turns out that the theoretical

results explain the imminent numerical difficulties and show the way to obtain

good reconstructions, thereby improving previous numerical results.

In the following we give a brief introduction to the Radon transform and

its inversion and also introduce some notation.

Let R, N, Z denote the real numbers, natural numbers, and integers,

respectively. Furthermore let 9 denote the unit disk in e and T the

interval [0,2r). For E T the variable 0 will always denote the unit vector

T(cos ,sin 5)W.

The Radon transform of a function f E fo(P.) is given by

Rf( ,s) = lf(sO+t')dt, 3 T, s e f. (1)

For a survey on the mathematical properties of the Radon transform and its

many applications see e.g. [4, 6, 7, 8, 12].

As we will see in Theorem 1.1 below, the Radon transform is closely

related to the Fourier transform. The Fourier transform of a function F E

LI(Rn) is given by

F( ) = (27)-n/2 J F(x)e-iX' dx (2)

n
where x.f = xifi denotes the dot product. The Fourier transform can be
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extended to the space of tempered distributions. Its inverse is given by the

formula

F(x) = F(-x). (3)
The convolution f*g of two L -functions is given by f*g(x) = Jnf(y)g(x-y)dy.

We have

) (27,n/ 2f( )g(0-. (4)

In case of the two-dimensional Radon transform the Fourier transform with

respect to the second variable alone is also of interest. It is defined by

(Rf)- 2 (0'7) = (2r)-1/2 J,, Rf(Os)6-i#sds (5)

where 2 indicates that the Fourier transform is taken with respect to the

second variable only.

The Radon transform is closely related to the Fourier transform by means

of the following theorem:

Theorem 1.1

Let f E G'(.). Then

(Rf) 2 (0,o ) = 4Vi f(00). (6)

Proof: Replace Rf(O,s) in (5) by the righthand-side of (1) and use the

definition (2) of the Fourier transform. o

Taking a two-dimensional inverse Fourier transform on both sides of (6)

yields immediately an inversion formula for Rf:
f kx) (2r) "1 I 2 f^(ff)ei' d

= (2r)-1 J2 o , I f (oO)eiOX'Odado
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/1

= y( 2r)lJ0 C af f(oO)eiarxOdodo
1 -1 22-a

= 1(2r)-3 / 2 J20  1 (Rf) 2(O,o)ei'OdadO

(7)

1 2r
=4 0 q(O,x.O)dO

a
where q(0,s) = Hy Rf(4,s), and I1 denotes the Hilbert transform acting on the

second variable. For other types of inversion formulas see e.g. [12, Chapter

q; II].

It is readily seen from (7) that an exact inversion of the Radon transform

is unstable because of the amplification of high frequencies due to the filter

o]I in the inner integral of (7). More suitable for numerical inversion are

approximate inversion formulas of the following kind, where this instability

! is removed by means of a suitable low-pass filter:

Theorem 1.2

Let 2# R be a radially symmetric low-pass filter with cut-off

frequency b, i.e.

Wb(f) = (2r) (IfI/b)

with 0 < 0(a) l 1 and O(u) = 0 for IaI > 1. Define wb by

1
wb(o) =y(2%)-3/21o10(1o1/b)

and let f E C_). Then

b(x) Wb(X. 0-s)Rf(O,s)dsdO. 
(8)

Proof: Proceeding as above we obtain

Wb*f(x) = J Wb(O)f()ei xd
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1 2 r zx 
d d

2r JJwb(x.G-s)Rf(o,s)dsdo
where we have used (4). 0

This kind of approximate inversion formulas goes back to [19], and

provides the basis for the filtered backprojection reconstruction algorithm

[15], which we will describe in section 3. There are many other methods for

the numerical inversion of the Radon transform. For a survey of such

reconstruction methods see [12, Chapter V].

In tomography one has to compute approximations to f from measurements of

Rf. The question arises, how many measurements are needed and at which

points ( ,s) we should sample Rf(o,s). Therefore we now discuss the relevant

sampling theorem.

2. SAMPLING ON [O,2r)
1 x 2

Since Rf($,s) is 2k-periodic in the first variable, we need a sampling theorem

for functions which are 2r-periodic in some of their variables. They can be

regarded as functions on T x R , where T denotes the interval [0,2r). One

essential tool for deriving the sampling theorem is the Fourier transform on

T x 2 which is defined as follows: Let Sn l n2 denote the class of

CW-functions of n1 + n2 variables which are 2-periodic in their first n
n2

variables and in C (R ) with respect to the last n2 variables. The Fourier

transform of a function G E Sn '2 is a function G:Zn x R 2  C given by
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G(k,o) =(2r) -(n1+n2)/2 Jn jtn OIs)e- 11J*se-ik. dsdO5

with (k,01) E ZIx R 2 and (0,S) E TIxR2.

Let L(z x 12) denote the space of all functions g = x R2 C C for

which

1n j Ing(k,o)jdo .

kEZnl

The inverse Fourier transform of a function g E LI(Z x R1 2) is given by

:g: T 1C,
g(Os) = (21)E 2) g(ko)e'O'sdu eik

kEZ1

For functions C E Sn  2 we have G = G.

Fr k' n1 1 nd n f 1  n2
For (k,) E Zn  Rn  and (0,s) E T x R we define the dot product in

the natural way, i.e.

n1  n2
(k,u).(3,s) = E ki i + E sjuj.

i=1 j=1 a
As to the set of points (0,s), at which functions are sampled, we restrict

our analysis to the so-called sampling lattices:

Definition 2.1

We call a non-singular (nl+n 2,n1+n2)-matrix W feasible [9] for sampling on

T x Rn2, if 2re i E WZn for i = 1,...,nl, where the ei are canonical unit
Rn +n2  h e

vectors of R1 , i.e. ej = ij The set

L = (Wznl+n 2 ) n (Tn I Rxn2

= {WkIk ~ Z n ,(Wk)i E T, i = 1,...,n}
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is called the sampling lattice generated by W. The set

L' = 2if lTZl2 = {2A'Tk~k E Z l 2}

is called the dual lattice with respect to L.

The simvlest example for a sampling lattice is the so-called standard

lattice on T x R. It is generated by a diagonal (2,2)-matrix with diagonal

(2r/P,h) where P E N, h > 0 and is equal to

Es: T x I: 0 =- -, S = hf; j,f E Z, 0O< j < P . (9)

The condition for feasibility means that WZn1+n2 is 27-periodic in the

first n1 variables and implies that the dual lattice is a subset 
of Znl X{ 2

which is the domain of the Fourier transform of functions defined on

T n  x R n2.

A given sampling lattice does not uniquely determine the generating matrix

W. It does determine, however, Idet WI as well as the dual lattice. The

dual lattice L' can be characterized in terms of L by

L' = {u E Zn1 x Rf2t Iv E L:u.v/(2r) E Z}.

For a given lattice L we define the lattice constant cL by
- (nl+n 2)/2

cL = (2r) Idet Wi

where W is any feasible matrix generating L.

A lattice must satisfy a certain requirement for its density of sampling

points in order to be a suitable lattice for sampling a given function g.

The following theorem shows that this density requirement is determined by the

size and shape of a set K c Z x Rn2 in which the Fouier transform g is

concentrated in the L1-sense: The translates of K with respect to the dual

lattice must be mutually disjoint. Note that this requirement of sparsity

for the points of the dual lattice corresponds to a density requirement for
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the points of the lattice itself.

Theorem '2.2

Let L be a sampling lattice for T x and K R n2 such that the

sets K + u, u E L' are mutually disjoint. Let g E Snl'n2 and

Sg(x) = cL I K(x-v)g(v)
vEL

where XK is the characteristic function of K. Then

sup I(sLg-g)(O,s)1_2(2) - (nl+n2)/2 E f,(k,)OKI(ko) Ido. (10)nI n fl

(0,s)ET xR 2 kEZn

The theorem is a modified version of the sampling theorem of Petersen and

Middleton [14]. It shows that the function g is essentially determined by

its valies on a sampling lattice L, if Ig(k,u)J is small outside a set K

satisfying the conditions of the theorem. The key for the proof of the

theorem as well as for proving some of the error estimates for the filtered

backprojection algorithm to be presented later is the following lemma:

Lemma 2.3

Let L be a sampling lattice for T l  R , G E Sn  F E LI(z R2

and F = (F)- Then for every y E Tn x R

CL E F(y-v)G(v)=
vEL

(2;)' (nl+n2)/2 i2 (k ' ) I; ((k'u)-u)ei(k')'Ydo" (11)

kEZ Rn2  uEL'

Proof: Replace F(y-v) on the lefthand side of (11) by
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(2)(n 1+n2) /2 E J R 2F(k,o)e (k)(Y-v)do-
kEZ 1

and use the Poisson summation formula:

cL E O(v)e i(k~-).v = E i((k,u)-u) (2
LVEL uEI2 12

which is proved in [9].

Proof of Theorem 2.2: Using the lemma with F = XK' we obtaiwr

I (SLg-g) (0,Ss)

-(2r)- (nl+n2)/2 E n2 [XK(k, 0) EL g((k,og)u)g(k,u)e ik0eiU'sdu
n1 12 uE L'

kEZ

1 (2ru) (n,+n 2) /2 E E' 9 ((k,o)-u)e ik0eiU'sdu
(k,u-) E K uEL',u#O

- (2r)(1n2)' /2 E ~~-ei. ~ o

(k,u) E Zn x I\

2(2)-(n~n2)/2(k,u) E EZ~ n JR2 \K g(o-d-

where we have used the fact that the sets K + u,u E L' are -.,tually disjoint,

an(I therefore

(k,u-) E fK uELI'u#OO ~n 1 x I2I

0
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In the following we apply Theorem 2.2 to the sampling of the Radon

transform on T x K. In practice one wants to measure Rf( ,s) for a

collection of different 'views', where each view consists of a collection of

measurements with fixed. Since this corresponds to measuring the line

integrals for sets of parallel lines, this sampling geometry is called

parallel-beam geometry. Suitable sampling lattices for this geometry should

contain more than one element ( ,s) for each occurring value of q. We call

lattices with this property, i.e. with the property

(q,s) E L 4 3s' I s: (q,s') E L

admissible sampling lattices. The following lemma characterizes these

lattices. It turns out that only a finite number LM of different values of

occurs and that for fixed we get a set of equidistant values of s, where the

distance d between two nearest neighbours does not depend on .

Lemma 2.4.

Let L be an admissible sampling lattice for T x R. Then there exists

d > 0 and L,M,N E N with 0 < N < M and gcd(M,N) =1 such that the matrix

r 2 A'
W(d,L,M,N) = ILM

0 d/M
generates L. Hence L is equal to the set

L(d,L,M,N)

2 j
J(Ojpsje) E Tx RIO = Lsje = d(e+6j/M) with 6jE N

such that (Nb1-j)/M E Z; j = 0,...,LM-1; t E Z}. (13)

Proof: Consider an integer 2 x 2 matrix U with Idet UI = 1. Then UZ2 = Z2

and the lattices generated by a matrix W and by WU coincide. If W is

feasible there exists an integer vector (L1,L2)T such that

W(L,L = (2r,O)T. There exists an integer matrix U with Idet U1 = 1 such
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that U(L,O)T = (L1,L 2)T where L = gcd(L1,L2). Hence the first column of WU

is equal to (2T/L,O)w. Since L is admissible the ratio of the elements of

the first row of WU is a rational number. Hence (WU)12 can be written as

2r N
-u with gcd(M,N) = 1. Changing N by a multiple of M does not chance WZ2.

Hence N can be chosen such that 0 < N < IMI-1. Since replacing N by -N gives

the same new lattice as replacement of N by M - N, it is readily seen that

allowing for negative values of d,L,M does not yield further lattices. o

0*
b

I
Figure 1: The set Ko(r,b)

In order to apply Theorem 2.2 to the Radon transform Rf of a function f we

have to determine a suitable set K such that the righthandside of (10) is

small. This has been done by Lindgren and Rattey [11, 16] who obtained the

set

1
Ko(T,b) = {(k,u) E Z x R I lol < b,lkI < T max(IuI,(1-r)b)} (14)

which is shown in Figure 1.
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Here b plays the role of an essential band-width of f in the sense that

60(f,b) := fl l>bl (fl d

is sufficiently small. r is an auxiliary parameter between 0 and 1 and

usually chosen very close to 1. The following rigorous estimate was given by

Natterer [12, p. 73]:

Theorem 2.5

Let f E C'(9). Then

8-r 1 E8 (f'b)+llfllL1n(Tb

(k,u) E Z x R \ Ko(r,b)

where (r,b) satisfies an estimate

0 < n(T,b) _ C(T)e -A(T)b

with constants C(T),A(r) > 0.

According to the last two theorems the procedure of determining

appropriate sampling lattices is as follows: Use a-priori information to

determine a value of b for which co(f,b) is small. Choose r close to one

(e.g. 0.99) and look for lattices L such that the sets Ko(r,b) + u, u E L' are

mutually disjoint.

If additional information about f is available it may be possible to

replace Ko(r,b) by a smaller set. For example if f is radially symmetric

Rf(k,u) = 0 for k 0 0, and Ko(r,b) can be replaced by the much smaller set

K(b) = {(0,o):Ia _5 b}. This of course greatly reduces the necessary amount

of measurements. In the following we will assume that the only available

a-priori information about f is the essential band-width b and therefore

always work with Ko(r,b).

For example, the standard lattice Ls given in (9) is identical with

L(h,P,1,0) of Lemma 2.4. The dual lattice Ls' is therefore generated by the
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matrix

2Z~~hr~lo)= tr 9z4hJ
he sets io{7,b) + V, V E LSO are mutually disjoint, iff r > 2b" and h6 < rib.

Since the Radon transform satisfies tie relation

lf -r.-s) = tf(#Zs) (1-5)

it is adiamtageoss to choose r even, say r = 2p, p E N. Then

If(2z(j*p)/(2p).h1) = If(2rj/(2p).-h1). so that we only hare to sample for

0 j < p.

Applying Theorems 2.2 and 2.5 yields the well-know. sampling conditions

p b/ b7 and h < r/b for the standard lattice:

Theorem 2.6

Let f E ooO) and Ls(hp) := L(h,2p,l-,O) be the standard lattice with

pb/7andh< rb. Then

(0,s)ETxl siRf -7 co(fb) Of Ollg(1b)"

The standard lattice is not the most efficient lattice suitable for

sampling Rf. Lindgren and Rattey [11,16] found that a sampling lattice first

suggested by Cormack [2] which needs only half as many samples satisfies the

conditions of the theorems. This so-called 'interlaced lattice' contains the

~2rj
sampling points (0j,sjd) = - 2hp+hb , j = 0,...,2p-1, t E 7 where

= j mod 2 = 1 j odd
i 10 j even

and is equal to L(2h,p,2,1) =: Li(h,p). We obtain the following conditions

on p and h:

Theorem 2.7

Let f E C(11) and L (h,p) be the sampling lattice L(2h,p,2,1) defined in
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(13). If either

rJ(2b) < b < xfb aad p (bm (4- 2 1))I7()

or

h* < rf(2b) ad p b;'7- (17)

thlen

sup ISA 1f1J -o ,b+fOV--)

Proof: The sets K (7:b) + u2, ui EL are mutually disjoint if and oaiy if -9h11

above conditions on p and hi are satisfied The estimate follows again frcai

tbeorems 2-2 and 2.5-

S0

We see that the interlaced lattice has a spacing of 2h between adjacent

samples in the s-variable and needs only a slig-,htly%, increased value of p. If

p is even the values Rf( 2st) for j p are redundant because of (1.5)- In

this case the interlaced lattice is nearly twice as efficient as the standard

lattice. If p is o ).d the data for j p are not redundant and we obtain the

same data as from the standard lattice.

While the theorem shows that Rf is determined by its values on the

interlaced lattice, it is not immediately clear, how good reconstructions of f

can be obtained from these data. The remainder of this paper is devoted to

this question.

3 THlE FILTERED BACKPRIJJEfTION ALGORtITHMI

In this section we describe one of the standard reconstruction methods, the

filtered backprojection algorithm [15] and its discrete implementation for

data sampled on an admissible sampling lattice. The algorithm can be
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regarded as a computer implemeutatiom of eq. (8) which read

bI (x) = J J vb(x.0-s)ff(#,s)dsd#, 0 = (cos O,sin

So the goal is to obtain an accurate reconstruction of VIb*f instead of f

itself. The cut-off frequency b controls the accurac, with which Vb*f

approximates f. If it is greater or equal to the essential band-vidth of

f.Vb*f will be -er, close to f. Therefore we usually choose the cut-off

frequency equal to the essential band-width. There is also a direct

correspondence between the resolution of the image represented by Vb*f and the

cut-off frequency b: the smallest details discernible in the image have a

size of roughly 2r/b.

Sampling Rf on an admissible sampling lattice L = L(d,LM,N) permits to

discretize the integrals by means of the trapezoidal rule:

2rd LM-1
Wb-f(x) = - ; E .b(X.-sj)Rf(.j,sjt) (18)

j=b -&Z "-" 1 '-T 2:rj

sj = d(e86./W), Gj = (cos 4,sin j)T, j = -

where we have used (13). A computer implementation based on (18) demands the

computation of the discretized convolution integral

Qj( jx.) = d E wb(x.Oj-sj)Rf(Nj,sje)

for all points x where the image is computed and all j,O < j < LM - 1. Since

.this would be computationally too demanding, we compute only Qj( jjlk), with
i 1

If > 0, k E Z, - - k < Ti and obtain an approximation for Qj(jx.Oj) by
linear interpolation with stepsize If. This means that we approximate

qj (oj,x. I.) by

I lj( j,x.Oj) := E Bll(X.Oj--lk)Qj( j,llk)
IIQ k

where BII is given by

.1-Is/l if Isl _ ifB1 (s) 0 otherwise.
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In the following we will always assume that ! is chosen such that
d

r/b> H= with mEN. (19)

A short computation shows that because of d/(Hl) E N

i . = d Z(IH'b)(x.Oj-sjd)Rf(Ojsjd.

This means, that the effect of the interpolation can be expressed by replacing

wb with the interpolated kernel

-H-(S ) = E BH(-Hk)wb(Hk).

kEZ

Its Fourier transform is given by
2rt

(IUwbY(a) = (2r)I 2 r'B(a)&Z 'b[ -2

= sinc2 (Ho2) Wb(a- __]£EZ
sin s

where sinc(s) = s Hence IHwb is not bandlimited. For [ot <] we have
(Ilwb)" (a) = sinc2 (Ho1 /2)b(o)

since we assumed that b < z/I. Therefore we can split IIIwb in a bandlimited

part wLO with band-width b and Fourier transform wLO( )  sinc2 (/2)wb(O,

and a high-frequency part w1j, with

2 ~ 2Ar1L7 r( 0 IuI1 < T/1wllI(,) = sinc2 (l/2) - I; w
- J = Iwb)^(r) l ;/1

This means that the algorithm computes the function

2nd LM-1f ' R(X) := . E E Z( l lwb ) ( x ' Oj - s j e) Rf ( Oj ' s j e)

2d LME1 S (wLO+wllI) (x. Oj- sje)Rf (jsje). (20)
LM j=O&Z

4 ERROR ESTIMATES

From equation (20) we see that the filtered backprojection algorithm computes
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a function fit(x) which approximates 'Wb*f(x) and can be decomposed as

fyt(X) = fLo(x) + fili(x) where
2rd L-I1

fL OX) = - jE wL (x. - sj dif (4jsjd) (21)

and fill(x) is obtained by replacing wl, by wulI" We will show that fLO

coincides with Wb*f up to a small error and that IfH1(x) can be kept small by

a proper implementation of the algorithm. From Theorem 1.2 we see that
2r wLo(x,-s)Rf( i,s)ds d5 = LO*f(x)

where VLO(f) = 2 I1I wLO(jI). lHence

WLO(x) = (Gll*Wb)(x) (22)

with the additional low-pass filter CH given by

iI(f)= j( 2r ) - sinc2 (III l/2) IfIb
o IfI>b

compare [12, Theorem V.1.2]. lence fLo(x) can be regarded as approximattion

for WLO*f(x) = Gil*Wb*f(x). The discrepancy Oli*Wb*f(x)-Wb*f(x) can be made

arbitrarily small by choosing a sufficiently small If.

We can use the following slightly modified result of Kruse [9, Theorem

6.1] to estimate the error IfLO (  Ojj*Wbf (x) :

Theorem 4.1

Let f E %(fl),g(0,s) := Rf(Os), Wb,wb as in Theorem 1.2, L = L(d,L,M,N)

an admissible sampling lattice for T x R as given in (13), and K C Z x R such

that the sets K + u,u E L' are mutually disjoint. Then

2 rd LM-1
LIM j wb(X'Oj-sje)(jsj) = Wb*f(x) + e.(x) + e2 (x) (23)

j=O (ea
where
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b

kEZ (k.a)gk

bd
2 ('<)I v 4 E,g(v)l . I IJk(lIx)Ida

VEL kEZ (k,a)9K,II<b

with Jk the Bessel function of the first kind of order k.

Applying Theorem 4.1 with Wb and wb replaced by CI*Wb and wLO,

respectively, yields the desired estimate for fLO:

Corollary 4.2

Let f, L,K as in Theorem 4.1, fLO as in (21) and WLO as in (22). Then

fLo(x) = WLO*f(x) + e, + e2

where e, and e2 satisfy the estimates of Theorem 4.1.

The sampling conditions of Theorem 4.1 and the estimate for e1 correspond

directly to the hypothesis and estimate of the sampling Theorem 2.2. This

indicates that the filtered backprojection algorithm is ideally suited to

exploit the advantages of minimal sampling lattices. The proof of Theorem

4.1 given below employs Lemma 2.3 in a crucial way, as was done in the proof

of the sampling theorem.

Proof of Theorem 4.1: For x E fl define q T x R -R

qx(,s) = Wb[X" -nC + s]. We have

Wb*f(x) JT qx(-yg(yldy

E qx(k'°a)g(k'o-)da (24)
kEZ fR

and (see [9, Lemma 6.1])

Iqx(k,u)l = (4r)-ff aO(a/b)Jk(alx)I (25)

_(4r)-lblJk(O'1xD) (26)

S(4r) 1b. (27)
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Observing that cL = d/(LM) the lefthand-side of (23) can be written as

E c q x(-V)g(v)-
vEL

Applying Lemma 2.3 gives together with (24):

Je(x){: [21rcl , E qx(-V)g(v)-h'b*f(x) I

= [q(k) E0 g((k,a)-u)da{. (28)
IkEZ JRX uEL' u#O I-

Let XK denote the characteristic function of K. Since the sets K+u,

U E L are mutually disjoint, we obtain

le(x)I

5 sup (Iqx(k,a)J) E g(ku)Idu
(k,X)EK kE Z (k,a)OK

+ E JR - XK(k ' , ) ) Cqx(k'o) ]L E  g(v)e-i(k,a).Vg(k,a) da

where we have used the Poisson summation formula (12) for the second term.

Hence

Je(x)J 2 sup (lqx(k')) I Jdo
(k,a)EZxR kEZ (k,a)K

+ CL E Ig(v)k E k)K qx (k,' )Idu.
vEL kEZ J(k ,a)OK

Now the estimate for e1 is obtained by applying (27) to the first term on the

righthandside. The estimate for e2 results from observing that qx(k,a) = 0

for jl > b and using (26) for the second term.

0

The results derived so far provide the following procedure for choosing an

appropriate sampling lattice and obtain accurate reconstructions: First use
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a-priori information about f to determine the essential bandwidth of f which

should also be chosen as cut-off frequency for the filter Wb" If the cut-off

frequency is too small, Wb*f will not be a good approximation for f and if it

is bigger than the essential bandwidth, the reconstruction error e2 will be

large. Otherwise e2 is not very critical, as we will see below.

Then choose the sampling lattice L so that the translated sets K+u, u E L'

with K . K0(r,b) are mutually disjoint. According to the results of section

2 this guarantees that Rf is properly sampled and leads according to Corollary

4.2 to a small reconstruction error e1.

The application of Corollary 4.2 to the standard and interlaced lattices

is as follows: As we have seen in Theorems 2.6 and 2.7 the required

disjointness of the sets Ko(r,b) + u, u E L' translates into the sampling

conditions p _ b/r, h < 4b for the standard lattice and into the conditions

(16), (17) for the interlaced lattice. lence the parameters p and h have to

be chosen accordingly. For the standard lattice the disjointness of the sets

Ko(r,b) + u, u E Ls' implies that the sets Kl(r,b) + u, u E Ls with K1 the

rectangle

K1(r,b) = {(k,u) E Z x R: Iki _ b/T,Iol _ b}

are also mutually disjoint. Therefore we can take K1 (T,b) for the set K in

Corollary 4.2. In case of the interlaced lattice we have to choose

K = Ko(r,b) to achieve optimally sparse sampling. This is of little

consequence for e1 but increases e2 .  To see this we reformulate the estimate

for e2 and bring out its dependence on lxJ: Let Ko,K1 be as above,

1
no := (1-r)b/T, x1 := b/r and fl := (1-(Tlxl)2)3/2. Using the estimates of

[12, p. 65] we obtain the estimate (i = 0,1):
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"[(, ¢K(Ob)l~ JbJk(o-xJ) JdT <d2 27- E, V e-ik. (29)

kEZ ,oj)Ki(8,b),Io<b - (1-- 21xi2 1/4 k>Ki

According to this estimate we expect for r close to 1 a strong growth of

the error e2 near the boundary of f. Since x, > to the error should be more

pronounced in the case of interlaced sampling. A comparison of the

reconstructions shown in Figures 3 and 6 of the next section shows that these

expectations are justified. With increasing b the error decays

exponentially.

The performance of the filtered backprojection algorithm using the

standard lattice has already been studied in [10, 12, 13, 20] There the

errors due to the discrete convolution and the numerical integration with

respect to have been treated separately. It turns out that for the

standard lattice both numerical integrations yield accurate results when the

sampling conditions are satisfied. This is no longer the case when the

interlaced lattice is used. Then the discrete convolutions are highly

inaccurate because of the stepsize 211 being too large. The results derived

in [5] show that these errors cancel out during the subsequent numerical

integration over T. But these cancellations may be disturbed by the

interpolation step inserted in between the two integrations. This provides

an intuitive explanation for the fact that, as we will see below, the

interpolation is harmless for standard sampling but critical for interlaced

sampling.

Having seen that fLO represents th picture we want to have it remains to

clarify under which conditions 1f11i(x)I will be small. We obtain

Theorem 4.3

Let f E (R), as in Theorem 1.2, and L(d,L,M,N) be an admissible
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sampling lattice. Then

sup b e(Hg12)Iez(b d8 do-. (30)

Proof: With sjy = d(e+6j/M) (see (13)) we obtain

2rd LM- 1

fIII(x) = -LM j=O EEZ W!II(X'j-sje)Rf(j'sje)d
,4i d LM-1 iox." iud(e+6./M)

- L M 1; J wIII(g)e 3e"z e i j Rf(tj,d(e+6j/M))daLM j=n R EEZ

2r LM- 1 igx.9. 2-rAf -i2Ue6.
= ( j w 1(u)e 'l (Rf) 1 j,_ d e -Id"

j=0 JRz t' Ed

where we have used Poisson's summation formula (12) with nI = O,n2 = 1 and

L = {de,e E Z}. With Theorem 1.1 and the assumptions (19) we obtain the

estimate

If,,,(x) I

(2,:>,/,ET fRI"JI( I e>z ,fl[(- dI

= (2r)3/2 sup J sinc2 (Ila/2) k w b[0 - r,j ' [<  - -]] dg

b sin2(ll1g/2) 2(kMm- 0.

= (2r) sup E k[#0 -J -~ 2 wb(0.) e r' fj 10. + d JOJ do-,<,o k-O+,< E +
1 2r2r r l 1 do-

sup (Isin2(11o/2) I o(g/b)  I - L
OET JE b ( ) &S( i)ez -2T du

The interpretation of this estimate is more involved than the one of

Corollary 4.2. As an example we discuss the case of standard sampling with
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d = h, and f essentially bandlimited with bandwidth b = /h, which is also the

cut-off frequency for the filter wb. Hence 2r/d = 2b and therefore the terms

with t 1 0 in E 0"[[o d]011 are negligibly small. The term with f 0

is equal to If(uo)l. In most applications we have f(x) 0. This means

that If(f)l has a sharply peaked maximum at the origin. For 161 close to the

cut-off frequency b, If(f)I is usually very small. In such a case the

integral in (30) will be small since sin2 (lil/2) is small for Jol << 1/l1. So

with standard sampling it is usually safe to choose II = h. An example for

this is the Shepp-Logan phantom which we use for our numerical simulations in

the next section.

If on the other hand if(f)i is not small for jl close to b, the interpolation

stepsize II has to be chosen considerably smaller than 4/b. Then sin 2 (11u/2)

is small for all values -b < a < b. As an example for this case we will

perform numerical tests with f(x) = Jl(blx-xo1)/Ix-xol. The Fourier

transform of this function is constant for ICI b and vanishes for Ifl > b.

5 NUMERICAL RESULTS

In this section we present numerical tests -for the theory derived so far. We

will concentrate on the standard and the interlaced lattices and will see that

the numerical results can be understood in detail using the theorems of the

last section. The theoretical results will in particular enable us to remove

the numerical difficulties with reconstructions from the interlaced lattice

reported in [9].

Figure 2 shows the first object we used for our tests. It is a

mathematical phantom due to Shepp and Logan [18] and simulates a cross-section

of a human head. Here f is given by a linear combination of characteristic

91



functions of ellipses. The density values of the ellipses are the values of

Rowland [17] multiplied by 900 and were also used by Kruse [9]. The

displayed values are those between 1 (black) and 75 (white). The biggest

value occuring in the picture is 900. All pictures are displayed on a 256 by

256 grid. As essential bandwidth we choose b = 128,r _ 402.

Figure 3 shows a reconstruction made using the standard sampling lattice

L5(h,p) with parameters

h = /b=1/128 p =404 I = h

0(, sinc(o-rI2)X[.ll](ou) (31)

where x[11]i denotes the characteristic finction of the interval [-1,1].

The sampling conditions of Theorem 2.6 are satisfied with r = b/p -0.995.

From the discussions following Corollary 4.2 and Theorem 4.3 we expect a good

reconstruction. This is obviously the case.

In Figure 4 we set If = hi/2 which introduces a high-frequency pattern in

the interior of the object. According to Theorem 4.3 a smaller value of If

should lead to a smaller error f1f1, hence to a more accurate reconstruction of

Wbf. This is indeed the case. The high-frequency pattern stems from the

jump discontinuity of the filter function 04 which causes a jump discontinuity

Of Wb(f) at Ifl = b. Therefore for this choice of 04 the high-frequency

pattern, though undesired, is a true feature of W b * f. It can be shown that

if 11 = h = r/b as in the previous picture, the error term fII removes the

discontinuity in the Fourier transform of the reconstructed function and thus

causes the high-frequency pattern to disappear.

If we reconstruct using the interlaced lattice LI(h,p) = L(21,p,2,1) with

the same parameters (31) as in Figure 3, the sampling condition (16) is

satisfied with T = 2b/(p+b) -0.998. But now the error f111 caused by the

interpolation becomes critical. The estimate of Theorem 4.3 reads
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Since If()I is smail for Jif > b A becas e of & rb 0m1'V t&-- terms Witl

I[l 5 1 in the sm on the rioLthaamside are mot megligibl small. A we hare

already discussed the terms with t = 0 will mot te critical for am 6bject like

this one. For Itl = 1 however. if(( -az )Ul = if((b))l -  is eams
that the integrand os the righthkadside of (32) might assze large vlaes for

Ioi close to b. since sin2(U,/2) is not small for these rles of o if

Ii = r/b. So we have to expect a considerable reconstruction error im this

case. The picture of Figure 5 shows this error which sakes the

reconstruction totally useless. The picture is essentially the same as the

one of (9. Fig. 8.2.(c)]. But our estinate (32) also suggests the following

three ways to remedy the problem:

1. Choose H << i/b so that sin2(Hu/2) << 1 for Il1 5 Ibi. tile this rethod
will always work, the next two possibilities are only suitable if JfA)M

is peaked around the origin.

2. Choose h smaller than r/b so that lJur/hl stays away fron 0 if Jai _ b.
If ifI is peaked around the origin, even a small decrease in h should give

considerable improvement, see Figure 7 below. On the other hand

decreasing h might result in a violation of the condition that the

translated sets Ko(r,b) + u, u E L' are mutually disjoint and thus

introduce new artifacts.

3. Choose the filter 0 such that I3(a/b)l << 1 for ti close to b. Then the

integrand in (32) remains small also for these critical values of Jaj.

These three options are tested in the following pictures.

In Figure 6 we put II = r/(16b) so that sin 2(la/2) < 0.01 for ja[ _ b. In
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tie imlerior tie pictare is virnally ideatical to the recomstraction -ith the

samdard lattice ad small I shlov is Firmre 4. In paricalar tie

hii-freey patterns dxe to tie discoatinuiky of # coincide. -side from

tie rhite ring-tpe artifact at the boemdary of the picture w ¢eh a g

recomstrsctiom of hb*,f- This corroborates the assertion that tEe large error

in the preioms rccomstractioa is caused by the interpolation. The artifact

at the bomadary can be traced to the error e2 of Corollary 4.2. The estimate

(29) s os that this error tern grows strongly for lxi approaching 1. This

explains that the artifact appears at the boundary of the unit circle.
Furthermore according to (29) the a2rifact should vanish if p is slightly

izcreased, corresponding to a snaller value of 2. Figre 8 shovs that this

As indeed the case.

The second possibility of isprovesent, nagely to decrease h, was tried in

Figure 7. he used again the paraneters (31) but set h = 1/1.50. Hence

la4-/hl > ;/h - b = 22r if lot _ b = 128r. Hence the peak of If(f)i near the

origin is avoided, and as expected the reconstruction error is strongly

reduced. In the interior of the picture there are still some disturbances.

A coaparison with the next picture suggests that these artifacts result from

the overlapping of the sets Ko(T,b) + u, u E L' caused by decreasing h without

increasing p. In Figure 8 we used again h = 1/150 but increased p to 470, so

that this overlap is greatly reduced. In addition we can assume a smaller

value of r in the error estimate (29). As expected from our reasoning above

the disturbances in the interior are removed as well as is the white ring at

the boundary. The high-frequency structures in the interior of the phantom

are very similar in Figures 7 and 8 but clearly different from the patterns

visible in Figures 4 and 6. The latter ones are, as we have seen no

reconstruction errors but belong to Wb*f. The difference stems from the
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interpolation and can be removed by reducing H, e.g. setting H = x/(3b).

This was essentially done by Kruse in [9, Fig. 8.2-(d)]. In his picture,

however, the high-frequency pattern appears as a low-frequency disturbance

which was not completely removed even by strong snoothing, see [9, Fig.

8.2.(e)]. The reason for this is that the picture is displayed on a 160 by

160 instead of a 256 by -956 grid, which causes aliasing.

The third nethod mentioned above: i.e. choosing the filter 6 such that

Iv(a/b)I << 1 for jai close to b yielded the best result for this phantom.

In Figure 9 we used the filter g(o) = cos(oz/ 2)Xr 1[_.1(o) and the other

parameters as in (.31). Ve obtain a good reconstruction without artifacts and

of cosparable quality as the reconstruction of Figure 3 where the standard

lattice was used. The small values of 0(a/b) for jai close to b seem to

remo:e the ring-like artifact at the boundary. The continuity of . removes

the undesired high-frequency patterns in the interior. The price for this is

a slight loss in resolution. So this method will only work if If()J is

already small for JfJ close to b.

In summary, the numerical tests show that for this object good

reconstructions using the interlaced lattice are possible if the algorithm is

implemented in the right way.

Our second test object is the strictly bandlimited function

J1 (boIx-xo)

f(x) = iX-x01

with bo = 20;r and xo = (-0. 4 , 0 . 7 )T . The main difference between the two

phantoms can be seen from the behaviour of their Fourier transforms. The

Fourier transform of the Shepp-Logan phantom is peaked around the origin and

relatively small for JJ close to b, but has no compact support. The Fourier

transform of the function above is constant for JfJ < 20r and vanishes for
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1(1 > 20r. Since co(f,b) = 0 for b > 20r we should be able to obtain very

accurate reconstructions from both lattices. We will see that this is indeed

possible. To achieve high accuracy we have to take into account that f has

no compact support and that the values of

Rf(4,s) =-2 sinc(20r(s-xo.O))

for Isi > 1 are not small enough to be completely neglected. For our

purposes it will be sufficient to use the data for Isl _ 6 for reconstructing

f inside the unit circle. As measure for the accuracy of the reconstructions

we use a discrete relative L2-error

[2E := .(f(xj) - fR(Xij))2 [ (f(xj))21-1/2

171,J,
where the xij are the points at which the reconstruction is computed.

Phantoms of this kind have been used by Rowland [17], Natterer [12] and

Kruse [9] for reconstructions using the standard lattice and by Kruse also for

reconstructing with the interlaced lattice. All three authors choose xo = 0.

This choice is not appropriate for our purpose since it makes the object

radially symmetric. This means that (Rf)-(k,u) = 0 for k # 0 which is too

great a simplification. Rowland demonstrated that it is necessary to choose

II << r/b o even when using the standard lattice. The reason for this can be

seen from Corollary 4.2. The additional filter GII is now critical because

If(f)i is not small for [fl close to b. While a choice of II close to r/bo

leads to discrete relative 12-errors around 0.4, much more accurate results

are possible with II small. For our tests we used the following parameters:

b = 20r p = 70 II = r/(16b)

0(u) =-

The reconstruction using the standard lattice with h = r/b = 1/20 yields an

excellent result with L2E = 0.0085. Using the interlaced lattice with the
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same parameters we obtain an equally good result with L2E = 0.0093. But in

order to achieve this accuracy it is crucial to satisfy the sampling

condition, i.e. to make sure that the sets Ko(r,b) + u, u E L', 7 = 2b/(pb)

are mutually disjoint. Increasing h to 1/18 increases L2E to 0.56. Even

decreasing h increases the error as the following table shows:

1/h L2E

16 ff.74

18 0.56

20 0.0093

22 0.042

24 0.22

30 0.57

36 0.45

38 0.33

40 0.0087

42 0.0072

50 0.0070

The explanation for this behaviour is that the sets Ko(r,b) + u, u E L1

are mutually disjoint only for h = 1/20 and h < 1/40. Hence satisfying one

of the sampling conditions (16), (17) is absolutely crucial in this case,

where the Fourier transform of the object is not small for frequencies close

to b.
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Figure 2: left Figure 3: right

Figure 4: left Figure 5: right
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Figure 6: left Figure 7: right

Figure 8: left Figure 9: right
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R.F. MILLAR

An inverse moving boundary problem for
Laplace's equation

I INTRDUCTION

Suppose that one or more incompressible, viscous fluids flow slowly in the

narrow gap separating two plane parallel plates. Such a configuration is

known as a Hele-Shaw cell. For steady flow, the problem is essentially

two-dimensional and, in the absence of gravitational effects, the average of

the fluid velocity across the stratum is proportional to the pressure gradient

([11, §330]). Since Darcy's law for flow through porous media is of the same

form, two-dimensional flow through a porous medium may be modelled by flow in

a lele-Shaw cell. Because lele-Shaw flow is more easily accessible to

observation and experiment than flow in a porous medium, this connection has

been utilised frequently to examine phenomena such as the interfacial

instabilities known to occur in both; see, for example, [19], and the recent

review articles [1], [5] and [18].

In a typical Ilele-Shaw problem, one viscous fluid displaces a second that

has different viscosity or density, and interest centres on the evolution of

the interface between them. Instabilities in the interface may arise when

the displaced fluid is more viscous than the other liquid. The easiest

situation to analyse occurs when one of the fluids has negligible viscosity

and density. In these circumstances, one may neglect the motion of this

fluid, the pressure of which is taken to be zero. We shall confine attention

to this most simple case of single-phase flow and, although the relationship

between fluid velocity and pressure gradient is based on the assumption of

steady flow, we shall assume its validity in the time-dependent case as well.
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I\
We shall also employ generally-accepted boundary conditions on the interface,

even though the question of which conditions are physically correct can hardly

be considered as settled ([1], [5], [18], [20]).

One may distinguish'between direct problems, and inverse (synthesis or

control) problems. In the former, the real physical sources, or

singularities, of the flow are prescribed in space and time and, starting from

some given initial state, one wishes to predict the state for subsequent

times.

For an inverse problem, the evolution of the flow is prescribed, and the

object is to determine what sources - if, indeed, any - will sustain the

motion. Because of the theme of this meeting (but also since the method to

be described is better suited to that task than to the direct problem), we

shall consider only the inverse problem and, for certain examples, we shall

discuss whether or not the prescribed motion of the interface can be realised

in practice.

Conformal mapping techniques have provided a powerful means for studying

iele-Shaw problems. For time-dependent (as opposed to steady-state)

problems, the usual procedure consists in obtaining a nonlinear differential

equation for the time-evolution of the unknown analytic function that maps the

unit disc onto the flow region ([1], [6], [7], [8], [9], [15]). It is

believed that these methods have not been used to study inverse problems.

In the present work, a different approach is adopted. For the

single-phase Ifele-Shaw problem, it will be seen that the pressure is the

solution to a Cauchy problem for the Laplace equation, with analytic data

prescribed on the unknown interface. An explicit representation exists for

this solution, analytic in a neighbourhood of the interface ([12]).

Moreover, the Cauchy data can be expressed completely in terms of what is
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called the Schwarz function S of the interface curve ([2]). Consequently,

the pressure can be written explicitly in terms of S and its derivatives

alone. Prescription of S as a function of time is thus equivalent to

prescribing the evolution of the interface, and the singularities required to

maintain the process are readily found. Some of these will lie on one side

of the interface in the fluid region; others may lie outside the fluid where

the solution corresponds to the analytic continuation of the pressure. (The

Schwarz function has arisen in previous analyses of Hele-Shaw problems; see

[6] , [9] , [10] , [15] , [16] and [17].)

In the following section, the problem is formulated. Then the solution

is expressed in terms of the Schwarz function of the interface curve. The

effect of surface tension (T) on the interface is included, and some immediate

consequences are briefly described. The physical realisability of solutions

is discussed. Time-dependent problems are examined under the assumption that

T = 0. Consideration is given to interior problems, in which the fluid

occupies a bounded, simply-connected domain, and to exterior problems in which

the complement of the fluid domain is of this form. Specific attention is

given to interfaces that are circles, ellipses, and limacons. The stability

problem is not addressed. For the interior problem, an interface that is

elliptical for all time can be generated by a system of simple sources on the

interfocal segment. In the exterior case, an interface that is elliptical

for all time can be generated only if the ellipses have constant eccentricity

and the pressure becomes unbounded logarithmically at infinity. In both

interior and exterior problems for limacons there are singularities in the

finite plane inside and outside the fluid region. For the interior

problem,it is possible to generate the solution. In the case of the exterior

problem, however, the relevant singularities extend to infinity and it seems
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unlikely that this solution could be realised in practice.

In connection with these examples, some consequences of nonvanishing

surface tension are investigated briefly. The interior solution for an

ellipse still seems to be realisable, but the exterior solution is not. For

the limacon, the mathematical solution does not exist when T 0 0.

Finally, we mention some other problems that can be formulated in the same

manner as those described here.

2. FORMULATION OF THE PROBLEM

L3t Dt denote a domain in the complex z-plane. Its boundary Ct evolves with

time t. An incompressible, viscous fluid fills a region between two

closely-spaced, parallel plates, and projects orthogonally onto Dt. Suppose

that this ilele-Shaw cell is unbounded and consider an inverse problem in which

the evolution of Ct is prescribed. One wishes to determine the sources or

sinks, if any, that will produce this behaviour.

It will be assumed that C t is a simple, closed, analytic curve, oriented

positively. The unit normal n to C t will always be drawn out of the bounded

domain enclosed by Ct.

If z E Ct, then the Schwarz function S of C t is defined by - = S(z,t),

([2]), so knowledge of S determines Ct. It may be obtained by rewriting the

equation f(x,y;t) = 0 for C t in terms of z and -, and solving for -. The

Schwarz function is analytic near Ct.

Let the angle 0 be defined in terms of the unit positive tangent vector t

to C.t by t = (cos O,sin 0). Then n = (sin 0,-cos 0), and the derivative

Sz(z,t) = e-i2o, z E Ct [2, (7.8)]. We shall define (Sz(z,t))1/2 by

1/2 e'i, z
from which it follows that dz/ds = 1/2 on Ct. Thus with S1/2 is associatedz t* z
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a particular orieatatiom of C -

A discussion of the ele-Sba equations is giem is [19]. If v denotes

the fluid velocity in 9t tiem, if graitatiomal effects are negligible,

1v r = - (2-1)

in wkich K := 6whd2 were d is the distance between the plates, p is the

coefficient of viscosity of the fluid, and a is the fluid pressure.

Incompressibility implies that

An=o, zElt, (2.2)

except at singularities. At a point on 't.
u = (2.3)

and v.n = V11 so

-- Y(2-4)

here T is the surface tension coefficient, assumed to be -on-negative for

imiscible fluids, x := df/ds denotes the curvature of Ct, and n is the

velocity of Ot at z in the direction n. The sign ambiguit y in (2.3) is

resolved in the following manner: for interior problems in which Ct contains

Dt the upper sign is chosen; for exterior problems we choose the lover sign.

(This sign ambiguity is a result of the unique definition of S1/2 for bothz
interior and exterior problems.)

3. SOLUrION REPRESENTATION

Equations (2.2) to (2.4) define a Cauchy problem for Laplace's equation.

Since Ct and the data are analytic, a unique solution exists in a

neighbourhood of Ct. It is our intention to determine the singularities of

this solution when Ct is prescribed. The goal may be attained by using a

representation for the solution.
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Sppose that 3 is a real neighbourhood of an analytic arc C. Let S

demote the Schia-z function of C, and suppose that a is harmonic on D.

Defize z -= x + iT, z := x- iy, viere x and y may be complex. Assume that

C is parametrised by arclength s as z = z(s), and let s = s(z) be the inverse

relationship. If a = v(s), Uvlfh = v(s) on C, then ([12]) u(x,y) = U(z.).

vhere
. 1 * 1 rs~z)

U(z.z ) = 1[v(s(z)) + V(s(z ))] . i J* ( s)ds; (3.1)

here an overbar denotes the conjugate function and the integral is in the

complex plane.

j If V(z) := v(s(z)) and W(z) := u(s(z))ds/dz. then (3.1) becomes
. 1 -* I ir)Z(O

U(z.z ) 1[(z) + V(S(z M 2 (3.2)

and z =z gives

u(x.y) = 1IZ) + V(S(z)] + i J ()d(. (3.3)

The quantities .and Vn in (2.3) and (2.4) may be expressed in terms of S

and its derivatives; for, by [2,(7.17)],

S- iSzS32
2

= -i (S- 1/2 ,

for zE Ct. Also, if now z(t) := x(t) + iy(t), where (x(t),y(t)) always lies

on Ct, then differentiation of i{t} = S(z(t),t) immediately gives v.n, and

Vn(z) =- 2S , z E ,. (3.4)

Insertion of the Cauchy data into (3.3) yields
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1 iS Z(z't) z
u(x,y;t)= T- T RSe) st((,t)d(, (3.5)

x = T [Sz(z,t)]3/2 z

and the solution is expressed completely in terms of S and its derivatives.

It may be shown that the integral in (3.5) is real. The contour of

integration is obtained by continuously deforming the path for a point near Ct

into that for the given point z, and will depend on the mapping properties of

S. If S is multivalued, this integral will be on the corresponding Riemann

surface. It is possible, however, to show that

z St((,t)d( = St((,t)d( + S-t(C")d,

in which z is any point on Ct. (A similar observation has been made in

[4].) Consequently (3.5) may be rewritten as
1 Szz(Z't)

u(x,y;t) = Re ± iT-K St((,t)dC1, (3.6)1 [Sz (Zt)] 3/2 - o

and if a complex potential w is defined by

1 Szz(Z't) z
w(z,t) : iT [Sz(z't)]3/2-K [z St((,t)d( (3.7)

(to which any purely imaginary function of t may be added), then

u(x,y;t) = Re w(z,t).

Now, wz = ux - iUy, so

1/
ux - iuy =*YiTSZ/2{S,z} - KSt, (3.8)

in which {Sz} is the Schwarzian derivative of S. From (3.8) for z E Ct, and

1
the result (7.23') of [2]: di/ds = i{S,z}, together with (2.1) and 3.4), we

deduce that
T dr.

v.t = :j a-, (3.9)

and verify that
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v.n = Vn, (3.1A)

on Ct. Thus, if T # 0 there is a tangential component of fluid velocity on

Ct unless d,./ds = 0. This component vanishes if Ct is a circle; but

generally there is a discontinuity in tangential velocity across Ct, which

corresponds to a layer of vorticity on Ct-

The results (3.9) and (3.10) refer to behaviour on Ct. Suppose, however,

that we are interested in fluid velocity at some point P interior to the

fluid. Then (3.8) is valid, in which S refers to Ct. Let C' be any simple,

closed, analytic curve through P, lying in the domain bounded externally by Ct

and having positive orientation. Suppose that t' and n' are the unit tangent

and normal vectors to C' at P. Thus, if t' = (cos 0', sin 0'), then

e ' = (S= )1 2, where S' is the Schwarz function of C; this result depends

only on the direction of C' at P. Consequently, at P,

iT -/2 1 z1/2 1
v.(t'+in') K(Sz) ((s/ + )(S"'2St, (3.11)

0212(S-1 /2) hsbeued
in which the result S/2{S,z} = -2 2 ) has been used.

az
If T = 0, the complex potential and velocity are determined by St alone;

in particular, time independent singularities of S do not play a role. To be

more precise, let z E Dt, for 0 < t'< t, and suppose that there are no

singularities of pressure in Dt,. Then, from (3.8) with T = 0,
t
Sw(zt')dt' = K(S(z,)- S(z,t)),

from which it follows that the singularities in Dt of S(z,t) coincide with

those of S(z,0), are constant in time, and do not affect wz(z,t). These

points have been noted previously ([9], [10]), and used by Ilowison to simplify

the integration of a system of differential equations that determine the
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evolution of C for an exterior problem. On the other hand, if T 0 0, then

zeros of S. become important. For, if Sz(z,t) = (Z-Zl)nH(z,t), where H is

analytic near zl, H(zl,t) # 0, and n is-a positive integer, then, near zl,

S S n(z-zl)-l-1/2nH(zl,t)-l/2; thus w has a branch point at z1 of

order at least -3/2 if n is odd, and a pole of order at least two if n is

even. Although mathematically significant, such singularities are likely to

be difficult, if not impossible, to synthesise physically. In general, then,

such an S will not be admissible, and the corresponding Ct will not be

realisable. Some illustrative examples will be given later.

The elimination of possible solutions by surface tension is consistent

with an observation in [6]. There, when T = 0, it was shown that a cusp

develops on the fluid boundary when a zero of the derivative of a function

that maps the fluid region conformally and 1-1 onto the unit disc reaches the

unit circle from its exterior. Such a zero may be shown to correspond to a

zero of Sz in the fluid region.

4. PHYSICAL REALISABILITY OF SOLUTIONS

In studying inverse problems, one objective is to determine all singularities

of the solution. Some of these may be internal singularities that lie in the

region occupied by fluid and others may be external singularities that exist

in the analytic continuation of the solution beyond the fluid boundary

C For a given interface Ct, into which category a particular singularity

falls depends on whether we are considering an interior problem or an exterior

problem.

The external singularities may be regarded as image singularities that are

induced in the solution and depend on the form of 0t. This interpretation is

common in electrostatics, where the effect in the region of interest of the
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image of a source in a conductor is produced by an appropriate induced charge

distribution on the conductor. In the Hele--Shaw probem, the fluid external

to Dt reacts on Ct against the internal fluid to create an effect equivalent

to that of the external singularities, thus resulting in the required pressure

on, and motion of, Ct. Consequently, we need not account explicitly for the

effect of external singularities, except to note that analyticity of Ct will

be destroyed at time t at a point where such a singularity meets Ct ([6],

[10], [15]).

A further aim is to decide whether the solution is uniquely determined by

its internal singularities and, if so, whether they can be realised ini

practice. For an interior problem, it was shown originally by Richardson

([15], [16]) that if the internal singularities are simple point sources, then

all the complex moments of Dt are determined, given the initial configuration.

From these is found the part of S that is analytic outside C and zero at

infinity. (Richardson's analysis would appear to generalize to other types

of singularity.) It was also pointed out in [16] that knowledge of the

moments of Dt alone does not necessarily determine Dt uniquely, as shown by

the example of Sakai ([21]). Nevertheless, from the fact that functions and

domains in the Iele-Shaw problem depend continuously on time, Richardson was

led to conjecture that some such domains would be uniquely determined by their

moments, and thus by their internal singularities. Specifically, he has

determined the evolution of Ct when there are as many as four internal simple

sources. His method involves the conformal mapping procedure; it becomes

more and more complicated as the number of singularities increases, and

impractical if the singularities of S inside Ct are not poles ([10]). (Note

that S is meromorphic inside Ct if and only if the mapping function occurring

in this procedure is rational ([2, p. 158]).)
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In the examples that follow, we shall assume that internal singularities

in the form of simple point sources, doublets, or continuous distributions of

simple sources on finite curves can be synthesised physically and, even when

T f 0, like Richardson, we shall conjecture that the internal singularities

and initial configuration uniquely determine the evolution of Ct.

5. TINE-DEPENDENT INVERSE PROBLEMS WITH T = 0

Here we consider time-dependent problems in which surface tension is

neglected. Many such solutions have been obtained: see, for example, [6],

[7], [8], [9], [10], [15], [16], [17]. In Richardson's work, solutions are

obtained that can be generated by realistic sources. It seems less likely,

however, that many of the other solutions can be realized in practice, even

with the neglect of surface tension effects.

Let us begin with a simple example. Suppose that Ct is the circle of

radius r(t), with centre at 0. Then S(z,t) = r2 (t)/z, and (3.5) gives

2
u(x,y;t) = -Krr[log z - log(r /Z)],

in which the principal branch of the logarithm is selected. Then

log z - log(r2/ ) = 2log(Izm/r), and

u(x,y;t) = -2Krr log(mzl/r), (5.1)

a-result that follows also from (3.6).

This solution is valid whether Dt is bounded internally or externally by

Ct. For the interior problem, 0 < IzI < r, and one finds u 0 accordingly

as 0. When r > 0, fluid is injected at 0 and extraction takes place if

r < 0. The fluid velocity is radial, the outward component being rr/IzI.

The source is at 0, and the flux across any curve enclosing 0 is equal to the

time rate of change of the area of Dt.
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When Dt lies outside Ct, Izi > r and u 0 accordingly as r 0. If

r > 0, fluid is removed at infinity; fluid is injected if r < 0. Again, the

velocity is radial and equal to rr/Izl, and there is a logarithmic source of

pressure at infinity. In practice, this flow could be generated in the

region between a circle centred on 0 in Izi > r and the circle Izi = r by

setting up the appropriate pressure difference between these circles, the

pressure in Izi 5 r being zero.

5.1. Interior problem for ellipses

We consider a rather more difficult example, in which the curves Ct(t > 0)

evolve in the form of a family of ellipses.

Let C be the ellipse b2x2 + a2y2 = a2b2, where a and b are prescribed

functions of time, and a > b > 0. The Schwarz function for Ct is

a2b 2ab 2 2 1/2

S(zt) = z- _z (5.2)

([2, (5.13)]), in which c2 := a2 - b2, and the complex plane is cut from -c to

c with (z2-c2)1/2 > 0 for z > c.

We shall consider the velocity field v of the fluid in the domain Dt

contained within Ct. It is given by (2.1) where, by (3.8),

r d a2+b 2  d 2ab

u- "'y =-K z c c2  t 2]~)I ~[~ +

1 2abc

+ (5.3)

Integration of (5.3) on a curve C enclosing the segment (-c,c) shows that

the flux across C is the rate of change of the area of Dt.
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The analytic function ux - iUy may be represented by its Cauchy integral

and so related to its singularities. Deformation of the path of integration

around singularities and into a circle at infinity, followed by some

simplification, leads to the following result:

u-iy =-Kz u- +ab 2[[c- f -] + _ _2ac

and, since u- iuy=wz, we find that

1 2 d  a-b 2K c d  ab 1 abc

2 -~ J [V'c22 -] vc~) -log (z- )dg (t) .
w(z,t)= jKz 2] +a- " c

(5.4)

Here any branch of the logarithm may be selected, since only u(= Re w) is of

interest.

From (5.4) it is seen that w is generated by internal simple sources along

the interfocal segment, while the term in z2 arises from external sources at

infinity. In general, c is dependent on time and the internal sources are

not stationary.

We consider two special cases, but only one in detail. In the first, it
d a- b

is assumed that the ellipses have constant eccentricity. Then Ut[-1 = O,

d ab
= 0, and (5.4) simplifies to

2Kab c log(z-d)
w(zt) = -c (c 2 2 ) d+g(t).

The function g may be chosen so that u = 0 on Ct, and

ab. 1 c logz- (5.5)
u(x,y;t) = 2Kab [log(-2 - - 2' 2)2_(

From this, one sees that the motion is generated by a continuous distribution

of simple sources on (-c,c) with density -2K(ab/T)/f(c2- 2), -c <' c.
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When z lies on the segment (-c,c), it is found that the integral in (5.5)
1

is equal to r log( c), so

u(x,O;t) = 2Kab log a-b -c < x <c; (5.6)

here the logarithm is constant in time, and u is constant for

-C < x < c, y = 0, for a given time.

Let C' be an ellipse in Dt that is confocal with Ct. Then it may be

shown that u is constant on C'. More precisely, if a' and b' are its

semi-major and -minor axes, respectively, then
Sa+bu(x,y;t) = 2Kab a z E C', (5.7)

which reduces to (5.6) if C' collapses onto (-c,c).

Since u is constant on C', v is normal to C'. A calculation based on

(3.11) with T = 0 verifies this and gives

a'ab
n, (5.8)

(a'4-c2x2)
in which n' is the unit normal to 0'. This determines the analytic function

ux - iuy on C' and, hence, everywhere. In principal, then, if this velocity

is impressed across C', the correct motion will be established inside Ct; but

because analytic continuation is unstable, small errors in impressed velocity

on C' will lead to large errors elsewhere.

For the second case, we assume that the ellipses are confocal. Then, on

omitting details, it is found that

1 22 d ra 1 d rc
u(x,y;t) = (y -x ) t [la-bJ rc2(ab)-c f(c2-)logIzId

A bd b 1rra+b~ 1 d

+ ]+ [log[2 l - (ab).

It may be seen that u(x,O;t) depends on x when -c < x < c, in contrast to the
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result in the previous example. In fact, the curves on which u is constant

are confocal ellipses only when the ellipses Ct are members of a family with

constant eccentricity.

5.2 Exterior problem for ellipses

Suppose that the domain occupied by fluid is outside Ct, with extraction from,

or injection into, Dt at infinity. It is assumed that S (and, hence, St) has

no singularities in the finite plane outside Ct; thus the only sources in the

fluid region are at infinity. We shall also suppose that ux - iu behavesx y
like z as z-i oo, so that the time rate of change of the area inside Ct is

bounded; any greater growth at infinity seems to be unreasonable on physical

grounds. Consequently St is of order z-1 at infinity. Finally, it will be

assumed that S is at most of order z as IzJi oo.

Subject to the assumptions on S alone, it may be shown that Ct(t > 0)

determines a family of ellipses ([22], [23], [14]), for which, in general, St

is of order z at infinity and the behaviour of ux - iny is inadmissible. (It

is conjectured that ux - iuy would have inadmissible behaviour at infinity if

S grew more rapidly than z, but we can offer no proof.) Only if the family

of ellipses has constant eccentricity will St be of order z-1 , as required,

and clearly C. must be a member of this family.

Then, subject to the assumptions above, one concludes that Ct can sweep

over every point outside Co if and only if CO is an ellipse, and Ct(t > 0) is

an ellipse with the same eccentricity as CO. This result has been given

previously in [8], and generalised to Rn in [3].

To discuss the possibility of synthesising this solution, the form of u at

infinity is needed. With notation unchanged from the previous section, (3.7)
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and 2t1/2and St(z,t)  2ab(z- give

w(z,t) = -2Kab 2 2 1

o 2 c2)1/2 ,  zo  .
0

-LSince u is independent of zo we may take zo = a. Then the integral is

expanded for Izl > c to yield 34
1 2 -2 4 -4

w(z,t) = -2Kab[log z - c z - + ... ] +

in which log denotes the principal branch, and h is real. Thus

2
u(x,y;t) = -2Kab logjzl + h(t) + O(IzF I), z1

If 0t is a circle, so c = 0, this result reduces to (5.1). There are no

internal singularities of pressure, but there is a logarithmic singularity at

infinity. The external singularities lie along the interfocal segment of the

ellipse Ct.

In practice, instead of a singularity at infinity, a source or sink of

pressure would be impressed along some closed curve C'; Dt would be bounded

internally by Ct and externally by C'. If C' were chosen to be a large

circle centred on 0 then, at least initially, the desired flow would be

generated. Alternatively, if C' were an ellipse, instantaneously confocal

with Ct and with semi-axes a' and b' (a' > a, b' > b), then the pressure on C'

is given by (5.7). The maintenance of this pressure on C' would produce the

flow in the region between C' and Ct but, because C' changes with time, this

would be difficult to realise physically.

5.3. Interior and exterior problems for limacons

As a further example, it is assumed that Ct is a limacon. This has been a

popular choice in earlier work that uses the conformal mapping technique to

generate solutions, because the mapping function is a quadratic polynomial;
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but no attempt seems to have been-made. to relate the solutions to their

singularities.

In polar coordinates, with the pole of the system at z = -a, Ct has the

form

r = 1 + 2a cos 0;
~1

here a is a function of t and it is assumed that 0 < a <, so that Ct is

simple. Then ([2, p.54])

(R+1)[2z+a(R+1)]S(z t) - (5.9)
4z2

Il)1

in which R := (1+4az)1/2, and R > 0 for z > -1/(4a). Since a < , the branch

point lies outside Ct, and the complex plane is cut along the negative real

axis from -1/(4a) to -o. If a = 0 for t = 0, then Co is a circle of unit

radius, centred on 0. The branch point moves to the right as a increases,
1

and meets Ct when a

The family of limacons considered here is a one-parameter subset of the

original two-parameter family considered by others ([6], [7]). In the

earlier work, the two parameters are related in such a manner that the

corresponding St has only a simple pole at z = 0. Here, in contrast, St will

have a pole of order two at z = 0. More precisely, for a > 0, S has a pole

of order two at z 0 and no other singularities inside Ct. Near z 0,

a 2a+1 3
S(zt) -, + + (a-a) +..., (5.10)Z11 Z

and

a 4aa
St(z,t) =-2 + -- + (1-3a2)a + ... (5.11)

z

By employing (3.8) and the Cauchy integral representation for ux - iUy we

obtain
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2
ra 4aa a r1/(4a) 2C +6aC+l d 1 p52

II

- iUy = -KC + z 3 2I1+4aI 1 2  "

Thus, to within an additive function of t alone,

w~~t = -a a o a 11/(4a) 2 2 +6aC+l log(C-z)d~]w(z,t) :K -4an log zo 2x 2C]

OD CI1+4aI7

and

ax a /(4a)2 2+6aC+l
u(x,y;t) = K[ 2 y2 - 4a loglzl - 2+ 1/2 logl -zld ].

OD C jl+4a~j1/
Suppose now that the fluid region Dt is interior to Ct. The internal

singularities at z = 0 correspond to a simple source and a doublet. The

external singularities are a distribution of simple sources on the negative

1
real axis from -o, to -1/(4a). If 0 < a < 2, the motion will be generated by

1
the internal sources; when a = 2' an external singularity meets Ct, which

loses analyticity at this point and the solution breaks down.

If the fluid is external to Ct, then the internal singularities are simple

sources on (-w,-1/(4a)), and the external singularities correspond to a simple

source and a doublet at the origin. Starting from an admissible initial

configuration (for example, a(0) = 0 so that C is the unit circle), this flow

could be generated by the source distribution on (-w,-1/(4a)); in practice,

this source configuration would be difficult to set up.

6. TIME-DEPENDENT PROBLEMS WITH T j 0

We shall now briefly re-examine the examples discussed earlier, but with

surface-tension effects included. It has already been noted that zeros of Sz

in the flow region are not permissible, so any such cases will be omitted.

It goes almost without saying that in general one effect of surface
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tension is to complicate the mlysis- Bt if 11 is a circle, te cm.naure

x is constant, and the condition (2.3) merely raises or loscrs the presmre m

by a constant amount. Thus surface tension does sot affect tie motion in

this case, an observation mwde prey-iotsiy in [24J.

The complex potential is given bv (3.7), from ich it follows that

- fy = ;iT P(S'I 2 ) - r (6.1)

Once again n - iU may be related to its singularities by means of the Camchy

integral representation. In addi'.ion to singlarities that arise when T = 0

the zeros of SZ now play, a role.

for the ellipse, from (5.2) we find that S. has two simple zeros at

z = *aI bj)/c. Since a(a-c) + b> 0, it follows that these lie outside the

ellipse. Thus the term in (3.7) or (3-18) that depends on T has two branch

points inside Ct and two outside Ct- Since Sz has zeros outside the ellipse,

for reasons mentioned earlier we shall disregard the exterior problem. For

the interior problem, additional cuts are now made in the complex plane

outside Ct from i:(a2 b2)/c to *w. In addition to the integral arising when

T = 0, the representation for w when T # 0 will contain an integral on (-c,c)

and integrals on these new cuts. Their integrands will behave like

[z+(a2+b)/c] - 3 / 2 near these points, and the integrals will involve second

derivatives 5f the potentials of simple source distributions. Since these

are external singularities, we conjecture that the flow is realisable, in

accordance with the discussion in section 4.

In the case of a limacon, from (5.9) it is found that S has only one
1

zero: z = -2a(1-2a2); because 0 < a < , this lies inside It, and the

corresponding term in w will have a branch point of order -3/2 at this point.

Since it is impossible to define ux - iuy by (6.1) as a single-valued analytic
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fatctiom in a meilbourhood of IV we conclude that the limacon is not a

soluatios for either interior or exterior problems if T f 0. This, then, is a

specific example that illustrates ho, surface tension limits the class of

possible solutions.

7. CElI3IN IFAUKS

he one-phase lelc-Shav fl probl-em on an unboacded domaim can be formulated

as a Cauchy problem for the Laplace equation. By adopting this point of

view, znd using an explicit representation for the solution, the required

harmonic function is expressed completely in terms of the Schwarz function of

the interfacial curve. This form of the solution is well-suited to the study

of inverse problems, in which the Schwarz function is prescribed. The

realisability in practice of the flow when the interface is circular,

elliptical, or in the form of a limacon, has been examined by relating the

Schwarz function to its singularities, with or without the consideration of

surface tension effects.

Other problems can be studied in this way. These include steady-state

problems, in which the curve Ct is merely the translation of Co with uniform

velocity V0 along the x-axis. Then S(z,t) = Vot + S(z-Vot,O) ([2,(8.8)]), so

St(z,t) = V0[1-Sz(z-V0t,O)] and the integration in (3.5) and (3.6) can be

performed explicitly. Such problems can be reduced to examination of S(z;O);

they can also be formulated directly in a more elementary way ([13]).

Examples include the motion and shape of bubbles and fingers in ilele-Shaw

cells of finite width.

Problems of two-phase flow can be formulated in the same manner, although

the Cauchy data on the interface are not given explicitly in terms of S, since

there is coupling between the solutions in the two fluids.
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Moving boundary problems arise also in many other contexts; see, for

example, the introduction to [6]. Some of these involve synthesis or

control, and the present approach should be useful there.

Direct problems are more difficult to examine in the present formulation,

for they require the determination of S fro- prescribed sources. Some

consideration has been given to this general problem ([6], [9], [10], [15],

[16]). Much remains to be done, and it is hoped that others will be

encouraged to study the question.
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A.B. PARRY

The scattering of velocity fields by an airfoil
in compressible flow

1. INTRODUCTION

The interaction of an airfoil with a fluctuating velocity field, and the

calculation of the resultant scattered field, is generally of great-importance

in both aerodynamics and hydrodynamics. Most of the work in these ares has

been concentrated on low frequency interaction problems in incompressible or

weakly compressible flow (von Karman & Sears 1938; Sears 1940; Kemp 1952,

1973; Osborne 1973; Goldstein 1976, chap. 3). The latter can, of course,

be reduced to an equivalent incompressible flow problem by a suitable

transformation (see, for example, Ward 1955; Landau k Lifshitz 1959). Here,

however, we consider such scattering problems in as much as they apply to

noise generation by blade row interactions on the new generation of advanced

propellers. In this application the blades operate in the high subsonic

regime - even at 'take off' and 'approach' conditions.' Accordingly, the

usual methods of dealing with these interaction problems are inappropriate.

Moreover - as we will see below - the disturbance velocity field is not always

convected with the mean flow, as is usually the case.

The way in which the fluctuating velocity field is modelled, and the

far-field sound obtained from the unsteady pressure distribution across the

airfoil chord (and, indeed, across the whole span of the blade) on advanced

propellers, is described in detail in Parry (1988) and Parry & Crighton

In virtually all of the present designs, the blade tips only operate
supersonically at the 'cruise' condition or design point.
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(198). Here, therefore, it is only necessary to consider the interaction of

a single Fourier component of the velocity field with a flat plate. The

problem is assumed to 'be two-dimensional.2  Our aim is to calculate the

scattered field and thereby the distribution of unsteady pressure across the

plate.

In §2 we consider the interaction of an airfoil with a convected gust from

upstream infinity. Applications of this to the wake interactions on a

counter-rotation propeller show considerable differences between the measured

and predicted acoustic field. In §3 the work is extended to include the

interaction of an airfoil with potential (i.e. non-convected) velocity fields

from both upstream and downstream infinity. In addition, an iterative

technique is presented which can be used to put the solution in the form of an

asymptotic series. Comparisons between predictions and measurements of the

far-field noise of a counter-rotation propeller show that the predictions are

extremely accurate, in terms of both absolute levels and noise directivity.

2. CONVECTED GUST INTERACTIONS

The major source of aerodynamic interference between blade rows is taken,

usually (and naturally enough), to be the unsteady velocity field associated

with the viscous wakes generated by the upstream blade row.3  We suppose that

2 Some justification for the two-dimensional approximation comes from the
asymptotic analysis of Parry & Crighton (1989) who showed that noise
generation is highly localised at discrete radii.

3 In addition the tip-vortex, of current interest with regard to advanced
propellers, can be represented by convected gusts. Tip vortex interactions
can, therefore, also be described by the methods of this section - providing,
of course, that the velocity field is known.
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the gusts - representing the velocity field - are of relatively high

- frequency; this is appropriate for advanced propellers which have large

numbers of blades (in addition, we must remember that the ear is most

sensitive to the higher frequency interactions which, therefore, assume

greater importance).

A transformation

We start with a single Fourier component of' the convected velocity field given

by

v = u exp[ik(Ut-x)] (1)

on y = 0. The axes x and y are oriented as shown in figure 1 and centred on

the airfoil leading edge with U the velocity in the x direction and k the

wavenumber. The disturbance velocity potential will satisfy the convected

wave equation which we write as

(1-M2 - + -2" 2ikM 2 - 2 2 (2)

where M = U/c0 is the Mach number and the time dependence eikUt is implied.

The boundary condition on the airfoil surface is simply

+v:0 on y=0,0<x<c (3)

where c is thc chord length of the airfoil.
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Y Y

x x

upstream downstream

Figure 1. The coordinate axes for downstream (leading edge) interactions or

upstream (trailing edge) interactions.

We now introduce the Prandtl-Glauert coordinates, scaled on the semi-chord

c/2, given by

X = 2x/c, Y = 2fly/c, (4)

where fl = (1-M2) is the usual compressibility factor, We also introduce a

new potential 0 such that

O(x,y) =iU O(X,Y)exp i TM2 X] (5)

The result of (4) and (5) is that (2) thdn reduces to the standard Ielmholtz

equation

V2+ K2= 0 (6)

where the new nondimensional wavenumber K is given by
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0M
K = - (7)

1- M
2

and a = kc/2 is the reduced frequency. In the new coordinate system the

boundary condition on the plate is given by

=-exp(-iX) on Y = 0, 0 X X 2, (8)

and the pressure p = -pD/Dt = -pU(ik+8/8x)O is related to the transformed

potential 0 by

pUu M
u exp i 2  X] [i + . (9)
M2 1MJLJ

where the wavenumber x in (8) and (9) is

01

M(10)

Airfoil response

The solution to (6), subject to the boundary condition (8), at high

frequencies produces a pressure distribution which oscillates rapidly away

from the leading edge of the airfoil where, indeed, it will be (integrably)

singular. The pressure will be, therefore, to a large part self-cancelling.

The trailing-edge region, where a Kutta condition is applied, should then be

relatively unimportant so that the pressure distribution is much the same as

that on a flat plate extending to downstream infinity. This leading-edge

problem, or two-part boundary problem, can be solved by the Wiener-flopf

technique (see, for example, Noble 1958; Crighton 1977). The solution has,

however, been given previously by Landahl (1961) and Goldstein (1976), who
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used an alternative approach, and we simply quote the result as4

2pUu r oA
Ap() =[,a 1Xi/2 exp i -i+-M .(I

Measurement vs. prediction

It is difficult to validate this result directly as we have no suitable data

on blade unsteady response. However, by combining it with the noise

radiation formulae for counter-rotation propellers (Hanson 1985), and an

appropriate model for the (viscous wake) unsteady velocity field (Parry 1988),

we can obtain predictions of far-field noise. (The way in which these

different stages can be combined into a robust prediction scheme has been

described by Parry & Crighton 1989). These predictions will be compared with

measurements taken from the flyover tests carried out by Rolls-Royce on the

Fairey Gannet counter-rotation propeller: details of these tests have been

discussed by Bradley (1986). This comparison has been given before by Parry

Crighton (1989) but, for the sake of completeness, and since the comparison

serves as a check on the blade response calculation, we will give it again

here along with a brief discussion. Since the front and rear 4-blade rows on

the Gannet were run at slightly different speeds, the interaction tone

components could all be separated out in terms of frequency, thus allowing us

to examine each tone individually.

The first interaction tone generated by the Gannet is the (1,1)

4 Our solution is the complex conjugate of Goldstein's since he chose a time
dependence eiwt and we have used ei ~t. In addition, a phase term ei0 is
missing from our result since here the reference is the airfoil leading edge
and not the mid-chord as in Goldstein's work.
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interaction.5  The directivity plot (sound pressure level versus radiation

angle where 00 represents the direction of flight or the propeller axis) for

this tone is shown in figure 2. We can see that there is a null at the 900

radiation angle in both the measured and predicted data. This is to be

expected since the (1,1) interaction tone generates a plane-wave mode (on the

Gannet which has equal blade numbers, B1 and B2 on the front and rear rows),

i.e. nlB1 - n2B2 =O. This tone peaks on the propeller axis and is zero in

the plane of the rotor. However, predictions are typically 25dB below the

measurements.

/ MEAS.%ME

/ .. \

i; €

VISCOUS WAKE

ANG.LE0

00 400 800 Koo 1(0

Figure 2. Gannet measurements vs predicted wake interaction noise for the

(1,1) interaction tone.

5 We will use the notation (nl,nl) to indicate an aerodynamic interaction

tone generated at the combination frequency nIf, + n2f2 where f, and f2 are

the blade passing frequencies of the front and rear blade rows respectively.
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The next two interaction tones generated by the Gannet are the (2,1) and

(1,2) interactions, for which directivity plots are shown in figures 3 and 4

respectively. For these interaction tones the predictions are at least 10dB

below the measurements. In fact, it is not only the levels which are

incorrectly predicted but also the directivities: predictions are 20dB below

the measurements for the (1,2) interaction in the forward arc, and 40dB below

the measurements for the (2,1) interaction in the rear arc.

I. \T - \ MEASURED

/ \
I\

II I I l I I/ 1 I I t
VISCOUS WAKE

ANGLE0

O0 400 800 1200 1600

Figure 3. Gannet measurements vs. predicted wake interaction noise for the

(2,1) interaction tone.
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Ve ao refer to the discessiom om imteractiom tome dirzctiities ghIrm

by Bradley (1996) and Parry & Crigtom (1%9) - Thecre it was sivowA Otha

altbogh the measured directivitI-s are similar im le-iel in forward amd r r

arcs, ay noise source om the rear blade row will produce only zsymmetrical

directivities (except for the plane wave ezse w1ere mI = ;Y. Uere amst,

therefore, be a sigpificant noise source on the forward blade row. Im order

to generate tones at the (hi.2) interaction tone frequencies, the Poise

source can oni be that due to the interaction of the forward blade rm; ith

the potential field generated by the rear rowr.

3. I 1 IAL FIELD INfEHACrOIDS

Accordingly. we proceed to consider the scattering of a potential velocity

field by an airfoil- In addition to the iateraction of the forward blade row

with the potential field generated by the rear row, it seems appiopriate to

include the interaction of the dowustrean blades with the bound potential

field generated by the forward blade row, because that is likely to generate

at least as large a field as that from the interaction of the forward row with

the potential field of the rear row. The latter involves a trailing edge

(weakly loaded if a Kutta condition is satisfied), the former a leading edge

(highly loaded). As before we assume that the detailed velocity field is

known (the modelling of the bound potential flow field of a counter-rotation

propeller, in compressible flow, is described in full by Parry 1988) and

consider a single harmonic component of the upwash

v = u exp(iwt-i x) (12)

on y = 0. The axes x and y are centred on the airfoil trailing edge, for

upstream interactions, or on the leading edge, for downstream interactions, as

shown in figure 1. The velocity in the x-direction is U and 7 is the complex
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IFigure 4. Gannet measurements vs. predicted wake interaction noise for the

£ (1,2) interaction t.one.

Airfoil response - upstream row

An analysis similar to that griven in §2 shosws that the transformed vclocity

potential ~,related to 3 by (5), again satisfies the Helmholtz equation

V V21 + K25 0. The boundary condition, however, is now given by

where -exp(-ix X) on Y = 0, -OD < X 0 (13)

+ 1M2

1-6

136,



/A =7c/2. (14)

For simplicity, since the pressure p is related to the transformed potential lS

by (9), we define a transformed pressure

p i + (15)

The solution is obtained by the Wiener-llopf technique and will be

described here in detail. We define + and - Fourier transforms by

*,(sY) = f_ p(X,Y)H(X)eiSXdX (16)

where II(X) is the leaviside unit function. The inverse transform is given by

O(X,Y) = I f(s,Y)eisx ds. (17)

On Fourier transforming the llelmholtz equation (6), we obtain

#"(s,Y) + x2 (s,Y) = 0, (18)

where we use primes to denote differentiation with respect to Y and

x = (K2-s2). (19)

Ifere we choose the branch of the square root so that X --ilsi as s -4 ±.

The branch cuts in the complex plane are shown in figure 5. The wavenumber K

is taken to have a small imaginary part.

137



Irn(s)

s-plana

-K

Re(s)

integration contour

Figure 5. The integration contour and branch cuts in the complex plane.

We now consider the region X > 0 where we assume continuity of pressure

across the wake. From (9) and (15) p is also continuous across the wake so

that, on Fourier transforming (15), we obtain

i(- s -t )(s,0+)] 0 0. (20)

Since 0 must be an odd functin of Y this leads to

#+(sO+) = 0. (21)

If we now take the Fourier transform of p in the region X < 0 we obtain

-2i(K-s)#_(s,o+) = AP_(s) (22)

where we have again used the fact that ' is odd in Y and AP* represents the
*

transform of the jump in p across the airfoil.

The boundary condition (13) can be Fourier transformed to give
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U

V'(s,O) =- e0 ei*X+isXdx
-00

= -w (23)
5- ,V

where the integral converges provided that 3s) < i) and 5z) denotes the

imaginary part of z.

From (6) and the requirement that the fields decay at infinity we obtain

#(s,Y) = C(s)eiXY (24)

where we have taken Y to be positive. (For Y negative we can again use the

fact that 0 is odd in Y.) On differentiating (24) and setting Y = 0+ we

obtain

V'(s,0) = -iX#(s,O+). (25)

Substituting (21) and (23) into (25) we find that
i

#+(s,O) + = ixt(s,O+). (26)
S-9

We now put X = (K+s)(K-s) so that, on dividing through by (_K-s), (26)

becomes
*t(s,°)i

+ ____ _ = i is_(s,o+). (27)

Here the first term on the left-hand side is a + function and the right-hand

side is a - function. The second term on the left-hand side can be split, in

the usual way, into the sum of a + function and a - function. We thus

rewrite (27) as

#+(s,O) i 1 1

= -i (K+s)f (s,0+) - * (28)

(s-to ) (K-K)
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where the left-hand side is a + function and the right-hand side is a -

function. By the usual arguments resulting from Liouville's theorem, both

sides of (28) are equal to an entire function E(s) which must be identically

equal to zero (otherwise $ (s,O) would diverge as s -i implying that 0 has a

singularity at the origin). From (22) and the right-hand side of (28) we

then obtain

*I(s) 2i(K-s)
AP(s) = (29)

(- (K-K) (K+s)
We now apply the inverse Fourier transform, as defined by (17), whence

* v i~k~m,)-- - (s- K~s- s) e- isX
Ap (X) - r!s ds. (30)

On wrapping the integration contour around the branch cut in the upper half

plane we find that

2eiKX+i/ 4  (K+K-is') ' 2(K-K*) -iX*X
Ap (X) 2e * r + exs' ds' - , e (31)

rf(K-.,) F s(s'+iK+iK.) (K2 - .K 2)
where the final term represents the contribution from the pole at s = . On

evaluating the integral we obtain

2(x-K) {eiKXw[i XI(iK+i K*)ei lX}+ 2 iKX-i/4 (

wr (X) I 32I

where w(x) = e-x2 erfc (-ix) is the complex error functin (see Abramowitz

Stegun 1965).

We now impose a Kutta condition at the trailing edge of the airfoil. In

the appendix we show that this is equivalent, in this case, to removing the

inverse square-root singularity at the trailing edge. Then, from (9), the

pressure jump across the airfoil is given by
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Ap(X) = -2ipU(u-p) eiu*xw[i - X(iu in1 ei (33)
• 41-M2) (i +i))(iJ-i/L)i L -J

where we have defined the normalised frequencies

,. aM aM
=T ,- ' 0 (1+M (34)

Leading edge correction

In the previous section we dealt with just the trailing edge problem and

consequently the leading edge effects have been neglected. Since leading

edge effects can be important, as they are usually heavily loaded, we will

discuss a correction to the present results to account for such effects.

We will use a technique developed by Landahl (1961) and Adamczyk (1974),

and discussed by Amiet (1975), for downstream convected gust interactions.

This involves an iterative technique for the solution of a 3 part boundary

problem. The situation is shown in figure 6 with the upwash specified on

-2 < X < 0.
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REGION REGION Y REGION
2 3

I
II

II
II

-ixX -ix*XI+ ve - 0 -+ e -O

ay 3Y KUTTA CONDITION

STAGE 2: LEADING EDGE CORRECTION

Ap2 - p _bP2 0 2 0I .--c=O -- O

ay ay

Figure 6. Three-part boundary value problem.

The first iteration involves solving the trailing edge problem with upwash

specified on -oo < X < 0; this is the case discussed in the previous section,
*

i.e. we set Ap1 = Ap,do/fY = -exp(-in X), on Y = 0. The second iteration

involves correcting the upstream boundary condition on -o < X < -2 without

affecting the boundary condition on the airfoil, i.e. on -2 < X < 0. We

therefore require the 'new' pressure difference across -c < X < -2 to be minus

that obtained on the first iteration, i.e. Ap2 = -Ap1 on -o < X < -2, and the

upwash on -2 < X < o to be zero.6  This second iteration produces an error in

6 We will use the suffix 2 throughout this section to denote 'second

iteration' values.
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the boundary condition on 0 < X < w which could be corrected by a third

iteration and so on.

We define a new coordinate X centred on the airfoil leading edge so that

X = X + 2. The pressure jump Ap2 across -w' < X < 0 is minus that obtained in

the previous section so that

AP2(X) = -Ap(X) = -Ap(X-2). (35)

Then, from (9) and (15), the normalised pressures are related by a phase
shift: -exp[-2iuM2 /(1-M 2 )]Ap*(X-2). From (32) this leads to7

,p-(X2()-) e FrM2 tisto

AP2(X) = (K2-*2 ) 2i

{eiK(X- 2)w[i IX-21(iK+i*)] e ix(X- 2). (36)

Since we are considering a high frequency problem, a and i are both large.

Then, from (7) and (14), the argument of the complex error function in (36) is

also large on X < 0 so that, from Abromowitz k Stegun (1965), we can use the

approximation

w [i lX- 21 (iK+iK*] (37)

ClX- 21 (iK+ iK*)

(In order to use this approximation we have used the fact that

jarg (iK+iX*)m < T/2.) In addition, since /i is large and 5(ju) # 0, the last

term in braces in (36) is from (14), exponentially small on X < 0;
.

consequently, this term will be neglected. The jump in P2 across X < 0 can

7 Recall that the inverse square root singularity term has been removed in

order to satisfy the Kutta condition.
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therefore be approximated by
, - 2 (x -x * ) a 2

Ap2(X) Nexp -2i -2 + iK(X2] (38)
kiK~iK,,,2 -K"2,iX.2 I

The boundary condition is that of no upwash so that
002
- 0, X > 0, (39)

where, for consistency, we have replaced Y with Y.

The problem is therefore defined by the lelmholtz equation with the

boundary condition (39) and the jump in P2 across X < 0 given by (38). The

solution is again obtained by the Wiener-llopf technique with + and -

transforms defined by (16) and the inverse transform defined by (17).

The Fourier transform AP2(X) is given by

. 2(K-K*) N 2 0  ei(s+K)X
AP(s - exp[-2i -2iA] JUd.AP2.(s)'= (iK+iKc,) (K2,) -

(40)

We now use the fact that K is large so that the integrand in (40) oscillates

rapidly. Then the integral is dominated by contributions from close to X = 0

and, by following Murray (1974), we can approximate (40) to leading order in

1/(K+s), by

AP2 (s) =- 2( exp [-2iE.j_ + K ]. (41)

From this point we proceed with the Wiener-llopf technique in the usual

manner and the pressure jump AP2 (X) is finally obtained as
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V~ipU~o-A~eia(1- X)- 4i-o

AP2(X) =

e-ir/4

{w[-e- i'/4 2(+X)] 7e 1 (42)

where we have reintroduced the normalised frequencies a, /a, c and a and, in

addition, we have defined

M (1+M)1" -? 9,2 '  = -- O.- (43)

We note, from (42), that we have restored the inverse square root singularity

at the airfoil leading edge. The pressure distribution on the airfoil is

given by the sum of (33) and (42). Comparing these equations we see that,

apart from the exponential decay term e- i/X in p and the inverse square root

singularity 1/ (1+X) in P2, the first and second stage solutions are basically

of the same form apart from the factor 1/(i/L+iu*) in p2. Since we are

considering a high frequency problem both #t and - (and hence o ) are large.

In the high frequency limit therefore the first correction to the trailing

edge problem is 0(11a) smaller than the leading order term - even though the

correction term includes the inverse square root singularity at the airfoil

leading edge. We conclude that, in the high frequency limit, the

semi-intinite airfoil model is a valid approximation and provides accurate

results to leading order in g.

Airfoil response - downstream row

The airfoil response calculation for the downstream blades is calculated in

much the same way as for the upstream blades. The only difference is that

now we have to solve a leading-edge problem instead of a trailing-edge
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problem. The least singular solution is chosen, and has an inverse square

*root pressure singularity at the leading edge.

The Wiener-lHopf technique can be used, as before, to obtain, the pressure

difference across the airfoil (which now occupies y = 0, 0 < x < ) as

- 2puU
Ap(X) =

(1-M2 (ip+iu*)

~ e- icrX

• - ) [eiUXw[i (-i'.+iu)] - -iX] _ e--}. (44)

l(_. iA+i ) IJ vx

Measurement vs. prediction

As in §2 we combine the results given here for airfoil response with the

appropriate noise radiation formulae and a model for the unsteady potential

velocity field (1lanson 1985; Parry 1988) in order to obtain predictions of

far-field noise which can be compared with the Gannet data. Note that here,

unlike the case considered in §2, we have noise sources on both front and

rear blade rows. The relative phasing of the two sources should, therefore,

be corrected to account for spatial separation (as discussed by Hanson 1985).

However we will, for the present, consider the two fields separately.

The first interaction tone generated by the Gannet is the (1,1)

interaction. The far-field directivity of this tone is shown in figure 7.
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Figure 7. Ganrnet measurements vs. predicted wake and potential field

interaction noise for the (1,1) interaction tone.

The first thing to note is that the predicted potential field interaction

noise is significantly greater than the predicted wake interaction noise: the

predicted forward and rearward potential field interaction tones are,

typically, 20dB greater than the predicted wake interaction tone. The

predicted potential field interaction noise agrees extremely well with the

measured data in both forward and rear arcs - except, perhaps, for a

discrepancy in the range 140 - 160 degrees,

The next two interaction tones generated by the Gannet are the (2,1) and

(1,2) interaction tones, for which directivity plots are shown in figures 8

and 9. Hlere we see, again, that the predicted potential field interaction

noise levels are significantly greater than the predicted wake interaction
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noise levels - typically by 20dB (and more at some angles). Note that, as we

remarked in §2, sources on the forward blade row (due to the upstream

potential field interaction) generate far-field directivities different from

those of sources on the rear blade row (due to the downstream row and

potential field interactions).

We emphasise that the predictions, shown in figures 7 - 9, are absolute

level predictions governed solely by the theoretical prediction scheme

outlined above and dependent on the high-frequency approximation. The inputs

for the calculation of the scattered fields are the incoming velocity fields:

models for these are described by Parry (1988).
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Figure 8. Gannet measuremecnts vs. predicted wake and potential field

interaction noise for the (2,1) interaction tone.
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Figure 9. Gannet measurements vs. predicted wake and potential field

interaction noise for the (1,2) interaction tone.

4. CONCLUSIONS

W/e have described a model for the calculation of unsteady velocity fields
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scattered from airfoils in subsonic compressible flow at high reduced

frequencies. The model covers interactions of leading edges or trailing

edges with convected or nonconvected (potential) gusts. In addition, an

iterative technique has been outlined by which the scattered field can be put

in the form of an asymptotic series with successive terms decreasing by

O(1& ), where o is the reduced frequency.

Comparison with noise measurements taken from a Fairey-Cannet

counter-rotation propeller has shown that the analysis produces extremely

accurate results - in terms of both the absolute level and the far-field

directivities - with no adjustment whatsoever of the theoretical predictions.

In addition, the comparison with measured data has shown that, for tile

Gannet, the downstream wake does not dominate the aerodynamic interactions,

and that the potential flow field around each row generates significant and

indeed dominant effects, both upstream and downstream.
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APPENDIX: THE KUTA CONDITION

In our analysis the airfoils have been modelled as flat plates (finite or

semi-infinite). As we have found, the pressure jump across the plate has

inverse square root singularities at the edges of the plate. In order to

alleviate the singularity at the trailing edge we must introduce a vortex

sheet, extending to downstream infinity, across which the tangential

velocities jump but the pressure is continuous. If the strength of the

vortex sheet is fixed in order to cancel exactly the trailing edge

singularity, then a Kutta condition is said to be satisfied.8 The use of a

Kutta condition in unsteady flow is a matter of controversy at the present.

For the moment, however, we will assume that a Kutta condition is satisfied.

We look for a potential OK which satisfies the Helmholtz equation (6)and

is odd in Y. Then, downstream of the trailing edge, there is a jump in the

potential across the vortex wake so that
i1IKX

OK iGe on Y = 0±, X > 0, (Al)

where VK and 0 are to be determined. Now p,(X) is continuous across Y = 0

since pK(X) is continuous 9 so that (15) implies that K = -n. Since there is

8 A more detailed discussion of the Kutta condition in unsteady flow is
provided by Crighton (1981, 1985).

The definitions of PK and PK are the same as in §§2, 3 except that we have
introduced a subscript K on those parameters relating to the velocity
potential OK'
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no additional upwash the boundary condition is

Y- = 0 on Y =0, X < O. (A2)

We now have, once again, a two-part boundary value problem which we will

solve by using the Wiener-Ilopf technique.10  We then obtain, on X < 0,

, 
2  (K+)eiK+ir/4APK(X)(A3)

This shows that the effect of the Kutta condition here is merely to remove

the inverse square root singularity at the trailing edge, i.e. we select
i

G =(A4)4 0= (K+x) (K- x*) (4
so that the sum of (32) and (A3) contains no term in 1/v/lm.

i[ A. B. Parry
Department of Mathematics
University of Strathclyde
Glasgow G1 iXIIJ Scotland, U.K.

10 Crighton (1977, Chap. 9) shows how the Wiener-flopf technique can be used
to solve a trailing edge problem in unsteady compressible flow with a Kutta
condition imposed.
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M.K. PIDCOCK

Boundary problems in electrical impedance
tomography

ABSTRACT

The reconstruction problem for Electrical Impedance Tomography is an extremely

ill-posed non-linear inverse problem and the results obtained are highly

sensitive to modelling and measurement errors associated with the technique.

In this paper we continue our investigations into some simple problems which

involve geometric errors and which can be solved by using perturbation theory.

The sensitivity of the technique to these errors is made explicit and we

describe one way of overcoming these difficulties which is suggested by the

analysis.

1. INTRODUCTION

Electrical Impedance Tomography (EIT) is a technique of medical imaging which

uses the contrast in the electrical conductivity of different body tissues to

produce an image of the conductivity distribution within a part of the body.

In many circumstances this image can be interpreted as a physical image and a

number of potential medical applications of this technique are being

investigated. The data used to obtain these images are measurements taken on

the surface of an object of the electrical potential which are induced in the

object by the application of known electrical currents to that surface.

Mathematically, the problem of EIT can be posed in the following way.

Suppose that an object f with boundary 0Q consists of an isotropic Ohmic

material with conductivity distribution g. If is the electrical potential

in S1 then
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V.(uVo) = 0 in 0

where

is known (measured) on

-o = is known (applied) on 099

It is important to note that one consequence of this model is that the

applied current, j, satisfies

j ds =0. (1)

The aim of BIT is to determine u from the boundary data. It has been

shown [1-5] that this problem has a solution for many reasonable conductivity

distributions and reconstruction algorithms have been described [6-11] which

work well in simple cases and in the absence of errors. However, the

reconstruction problem of BIT is a highly non-linear inverse problem and it

has been demonstrated numerically [7] that the Frechet derivative of the

mapping which takes an applied current to a measured voltage has singular

values which decay exponentially. The inversion procedure is therefore

extremely sensitive to the possible errors associated with this technique.

There are a wide range of such errors which have to be considered. These

range from basic deficiences in the mathematical model of the system to

numerical errors introduced in the solution of equations in the reconstruction

algorithm and data measurement errors defined by the instrument specification.

Each has its own characteristics and a detailed study of them is essential if

BIT is to become a useful diagnostic tool. The interaction of any

reconstruction technique with a model of these errors represents one of the

attractions of inverse problems.

In this paper we will consider just one type of error - that of imperfect

knowledge of boundary shape. We will consider a class of simple problems
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which can be solved using perturbation methods. This may be a little

artificial but it does enable us to follow a parameter which characterises the

boundary error in an explicit way. In EIT the electric current is applied to

the surface via a number of electrodes positioned on the boundary but in this

work we will assume that the current is adjustable at any point on the

boundary.

In Section 2 we will describe the basic problem and the ideas behind our

calculations and in Section 3 we will discuss a particular example of boundary

error where the boundary is perturbed from its assumed shape in a simple way.

In Section 4 we will extend our analysis to more general perturbations and

suggest a scheme for identifying the parameters in the perturbation. We use

polar coordinates (r,#) throughout.

2. THE MODEL PROBLEM

Most of the studies in EIT have been concerned with the two-dimensional

problem and a simple example often considered is that of distinguishing

between two conductivity distributions o1' 1 2 on the unit disc, 0 < r < 1

defined by

9l(r,O) = 1 0 r< 1

02 (r,0) =a 0 < r< R < I

1 R<r<l

It is easy to show that if the applied current j(O) is given by

j(O) = E ancos(nO) + bnsin(nO)
n=1

then

0n

(r,O;a 1,j) = n i ancos(nO) + bnsin(nO)
n=1
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L a,

and

¢(r,O;u2 ,j) = AJ Anrn acos(nO) bnsin(nO)

where
1 [1- #R2 ns 2 n]  = rR, n -1-

An= with s =rr>R and
n 1+,R2n R

As we are able to choose coefficients (an, bn) in anyway, it is natural to

ask if there are any combinations which are somehow better than others.

Gisser et al [12] have suggested that if we wish to distinguish between al and

U2 then the best normalised currents (i.e. luJl = 1) to use are those which

maximise

bj= II(r,0;U1,j)-0(r,0; 2,j)I

where

1 fg ds and jjfj2 = < f,f>.

In other words, we should try to maximise some average difference between

the signals measured in the two cases. Other criteria for the choice of

optimal currents have been proposed [13] and these will have different

stability properties when interacting with the geometric errors considered in

this paper. We have not yet studied these alternative currents and we

confine our attention to those proposed in [12].

For the case of the problem described above, these optimal currents turn

out to be trigonometric functions jm(l) = cos(mO), sin(mO) for integer m, and

2 ,R2m

the corresponding value of bm = 6jm is i(1+/uR2m)" It is interesting to note

that if this value of 6. is less than the accuracy, E, of the measuring

equipment, then g, and 62 are not distinguishable using the current j. since

the value of bm could be an effect of noise. iowever, if 6M > E then we can
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distinguish between these two distributions. This is the basis of the

calculations which we will report in the next section. We will calculate 6m

arising when these optimal trigonometric currents are applied to a body whose

shape is thought to be the unit disc and which consists of material with a

uniform conductivity distribution, 01. If the boundary were correctly known

and all the measurements were accurate then the value of .m would be zero.

The error in the boundary description will mean that a non-zero value of 6m

will be obtained and if m > B we could, erroneously, infer that there is am
circular anomaly of the form 02.

3. BOUNDARY DISTORTION

Consider the situation where the angular displacement of the drive electrodes

is correct but the polar description of the boundary curve is r = r(O) rather

than r 1. In this case we have that

Oq0 1 o3 r'(0) 0S(2TR= -M r(O) T- rV (2)

and

jog jds = J0 w(O)j(O) dO

where w(8) r2(O) + r,2(9)/2

If r(O) = 1 + eF(O) then we can write (2) in the form

,0) = ao + ale + a2c
2 + q33 +

where ao,al,... are functions of 0 and the partial derivatives of 0 with

respect to r and 0, evaluated at the point (1+eF(O),O).

We can estimate the partial derivatives at this point by expanding these

functions in a Taylor series about the point (1,0). If we then write 0(r,O)
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in the form

1 2 2 3 30(r,O) = 00(r,O) + (r,O)f + 0 (r,O)e + S (r,O)c +

we find, finally, that

2 3
nj(1+eF(n)'O) =0 + 916 + 12 2 + 93E +

where the functions ogl,.... are complicated functions of 0 and the partial

derivatives of 0o,01,... with respect to r and 0 evaluated at the point (1,0).

Suppose that we have the simple case r(O) = 1 + e cos(O), i.e.

F(9) = cos(O), then we find that

'an j ds j [1+2e cos +c ]j(O) dO.

If we now try to apply the optimal currents Jm(O) described earlier, we

find that the condition (1) can be satisfied exactly only for Jm(O) = sin(mO),

m an integer. So, for example, if we apply jl(O) = sin(O) to the distorted

boundary we find that at the point (1,0)

go

1

a2o
,= + cos 0 + sin(O)

and similar, but more complicated, expressions for other #Is.

Since 0 satisfies Laplacets equation in f0 so too do 0o,01,... On the

boundary, r = 1, we find that go = sin(O) and ,= f2 = "" = 0. After

considerable computation it follows that

1AE= II0(1+6 cos(O),O) - cos(O)II

8 2

In general, if j(O) = sin(mO) then we find that
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We~~~~ ca M 2+IL~i 1/2 bycnidrn
m- 2 -+ 0(E) m #1

We can generalise the type of perturbation slightly by considering

boundaries defined by r(O) = 1 + e cos(k#) (k = 1,2,...). If we try to apply

the optimal currents jm(O), we find that equation (1) restricts these currents

to sin(mO) for m an integer and that

k Ar + 0(d) m=k

k m2

= 22 2 2 1/2kImk m +k 3+(

C+ ,oE m

krl1 1 22 1/2
2 + [2 + C + O() m<k

(m+k)

In Table 1 we give values of AC for a range of values of k and m. It isk m

clear that there is a direct relationship between the detectable error in

boundary shape and the measurement accuracy of the system. It is interesting

to note that the observed behaviour gives a possible scheme for identifying

displacements of this rather special type. It appears that if we apply

currents of increasing spatial frequency all we need to do is to locate the

dip in the values of A against frequency in order to identify k. Further

comments on the interpretation of kAC can be found in Pidcock and Breckon

[14].
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£m

km 1 2 3 4 5 6

1 0.25 0.53 0.28 0.19 0.15 0.12

2 3.02 0.25 1.02 0.53 0.36 0.28

3 3.77 4.51 0.25 1.52 0.77 0.53

4 4.68 5.01 6.01 0.25 2.01 1.02

5 5.64 5.84 6.26 7.51 0.25 2.51

6 6.61 6.76 7.01 7.51 9.00 0.25

Table 1. Values of k A6 for various values of k Pa i. All entries shouldk m

be multiplied by e.

4. GENERAL FOURIER PERTURBATIONS

It is interesting to note that for small e, the relationship between A6 and c

given the previous section is essentially linear and that it appears possible

to perform simple experiments to determine the parameters of the perturbation

once its general form is known. The relative ease of these tests encourages

us to think that more general perturbations which can be described in terms of

a Fourier expansion might be identified by a suitable series of such tests.

Such an expansion should be very appropriate in the case of Ghe human body

where the relative smoothness of the body surface should lead to an economical

description in terms of trigonometric series.

Consider, therefore the more general boundary perturbation given by

1 OD
F(O) = §Ao.+ E Ancos(nO)

n=1
If we try to apply one of the optimal boundary currents it is easy to see

that (1) implies, once again that we must use sin(mO) for integer m.

Following the analysis described in the previous section to first order in e
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ve find tiat

= . 0 = siu(=s)

40a 9
= -(l,) F F(O) W- OA - F,(0j jr(1,) = 0

aad it follows that

kr=

°(r) = =-s(#)-

where B= [(k-) AIk - (I-)-

Hence, the potential actually measured differs from that expected 7f there

were no boundary error by an amount

66*(G ) = .°(1cF(G,O~ + c 6I(1+cF(8),8) - .e°(1,8 0(f 2 )

= s c. sin(kO) 0(c2) (3)k-I

where ck= 2kAIm-kI - (2k;,) Am+k].

We now have a possible scheme to determine the Fourier coefficients. It

goes as follows. Apply a series of currents sin(mO) to the object and

measure resulting voltages at a number of points. Use a Discrete Fourier

Transform to express the measured voltage 60m(0) in terms of its Fourier

components and use the above expression (3) as a system of linear equations to

determine {Ak}. The implementation of this scheme and a detailed study of

its numerical stability, together with an investigation into the effects of

using only a finite number of electrodes,is the subject of future work in this

area.
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VIe have sees that tie recoastraction problem for EIT is extremely sensitive to

errors i3 the boundary shape. Tie analysis presented has, however- offered a

possible way to overcome this problem. A study of this method will be

presented elsewhere.
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B.D. SLEEMAN

Interior and exterior inverse problems for
the Helmholtz equation

1. J=nTDl 8IN

In this paper we discuss a number of recent developments relating to inverse

problens for the Helmholtz equation. In particular we concentrate on the

problem of determining the geometry of an unknown domain (e.g. vibrating

membrane or scattering obstacle) from given data.

The paper is presented in two parts. In Part I we consider the classic

inverse problem of determining an unknown domain fl from a knowledge of the

eigenvalues of the Laplacian defined in -0. In §1 we survey the classic

asymptotic estimates for the counting function N(A). Beginning with the

fundamental results of ilermann Weyl we survey the most recent results for non

smooth domains. In §2 we take up the eyl-Berry conjecture regarding the

asymptotics of N(A) for fractal domains. In particular we describe the

recent contributions of Fleckinger and Lapidus.

Part II of the paper is concerned with the important inverse acoustic

scattering problem. In §3 we formulate the direct scattering problem which

provides the basic setting for the inverse problem. §4 discusses the central

question of uniqueness of reconstruction of an unknown scattering obstacle

from far field data.

In §5 we consider the "exterior" analogue of the asymptotics of N(A) by

discussing the high frequency behaviour of the scattering phase s(k). In

particular we concentrate on the asymptotics of s(k) for non-smooth domains,

which complements the recent results of Melrose, and also fractal domains.

This latter result provides the exterior analogue of the Weyl-Berry
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conjecture. §6 returns to the practical problem of devising algorithms for

the nurerical reconstruction of the unknown scattering obstacle.

Wile this paper is largely expository, a number of the results are new

and have not previously appeared in the literature- Theorem 2.3 is new as is

Theorem 4-4 regarding uniqueness. The results embodied in Theorems (5.2),

(5.3) and (5.4) are also new.

PART I

INTERIOR INVERSE PIBLIMS

§1 Geometry of the Counting Function

Let Pl be an arbitrary non empty bounded open connected set in 0n(n > 1) with

boundary r - M and consider the eigenvalue problem

-Au= Au infl,

u = o on r, (1.1)
n 2 2

wher = denotes the Dirichlet Laplacian in P.. The parameter A is

said to be an eigenvalue of the problem (1.1) if there exists a u 0 0 in Io1.2)

satisfying -Au = Au in the distribution sense. It is well known that the

spectrum of (1.1) is discrete and consists of an infinite sequence of

eigenvalues which may be ordered according to their multiplicity as

0 < Al- 5 2 .... < Ai-"'
where Ai -4  as i -i o.

In 1912 Weyl [47,48] estaolished the classical result that

I 2/n

Ai " C[]-k J as i - o, (1.2)

where Cn = (2r)2(n)-2/n depends only on the dimension 'n'. Here 191,

denotes the n-dimensional Lebesgue measure or "volume" of fl and Bn is the
n
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volume of the unit ball in Rn.

Another way of estimating the asymptotic behaviour of the eigenvalues

J]iJi=l is to work with the "counting function" N(A) defined as

j N(A) = #{i > 1,0< Ai < A}, for A > 0. (1-3)

Consequently Weyl's result can be restated as
v~- B nlli /2

N (A) - (2r), B-)- in as A -4 . (1.4)

In a classic paper entitled "Can one hear the shape of a drum?" Kac [19]

has asked the following question: Can someone with perfect pitch recover the

precise shape of a drum just by listening to its fundamental tone and all the4 overtones? This question has motivated some important advances in the last

two decades. In the first place, it is natural to ask wheth~er the problem

has a unique solution. Unfortunately, the answer appears to be no in

general. Urakawa [44] has discovered two isospectral domains in Rn (n > 4)

which are not isometric. Despite this it is possible to recover a lot of

topological information about Ri from the spectrum of (1.1) and in particular

from the counting function and other related functions. Indeed, if r is

smooth (i.e. of class Co) then Seeley [36] and Pham The Lai [24] have shown

that

N(A) = (2)-n Bnlln An/ 2 + 0(A(n -1)12) as A - w. (1.5)

The proof of this result makes use of techniques from the theory of spectral

transforms and of Fourier integral operators (c.f. ilormander [16]). More

recently Ivrii [17] has shown that if 9 is a bounded domain with Co boundary r

and if 9 does not have too many multiply reflected closed geodesics then

N(A) = (2r)"n B nl/ 2-Inln_1n1)/2+o(2(,-1)/2 as A -. (1.6)

where C' is a positive constant depending only on 'n'. There are a number ofn
extensions of this result. For example Ivrii's result extends to the Neumann
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problem, the only difference being that the minus sign of the second term on

the right hand side of (1.6) is changed to a plus sign. Results are also

known for the "impedance" or Robin boundary value problem [41] as well as for

higher order positive elliptic operators with locally constant leading

coefficients [12].

An alternative attack on the problem is to study the asymptotics as t - 0+

of the "partition function" (or trace of the heat semigroup)
At co -Ait

Z(t) e e dN(A) = E e (1.7)
i=1

which, when the integral exists, may provide more information than N(A).

Thus for example if r is C and n = 2, McKean and Singer [31] and others have

shown that

OD i/21 +
Z(t) = -t 8 1/2 -+ * (1- h) + , Cit /2 as t -1 0 (1.8)

here h is the connectivity of 9 and the coefficients Ci are metric invariants.

Indeed they are polynomials in the curvature of r and its derivatives.

Smith [42] has shown how to compute these coefficients using symbolic

manipulation techniques.

If r is not smooth then neither (1.6) or (1.8) are expected to hold. For

example if fl has an outward pointing cusp then Waechter [46] has shown that

(1.8) takes the form
lal irl -

Z(t) =4;t - 8(t) 1 2 + O(t"), 0 < v < 1/2. (1.9)

If we consider the Neumann problem then even the first term of (1.5) may not

hold if the boundary r is "too long". This can be demonstrated in the

following example due to Fleckinger and Metivier [11].

For a given positive number fl define the set

ffl {(x,y) E R21x E (0,1),O<y<l + £ j-fli (x)}, (1.10)

j1N
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where (Ij)j E N is an infinite sequence of disjoint open intervals in (0,1)

and where denotes the characteristic function for the set I i.e.
11, x E Ij

,Ij- 0, x I1

then for the Neumann problem Ye find that for 0 <fl < 1/2

N(A) - AI/2f as A- (1.11)

where : means that there exist two positive constants C' and C" such that

C'AlI/2f < N(A) _ C"Al/2

for all A sufficiently large.

In the following section we discuss the asymptotics of N(A) and Z(t) in

the extreme case when r is "fractal".

2. THE WEYL-BERRY CONJECTURE AND FRACTAL DOINS

In 1979 M. V. Berry [3] motivated by the study of the scattering of light

by random surfaces conjectured that if r is "fractal" with llausdorff dimension

1i E (n-1,n) then (1.6) takes the form

N(A) = (2r)-nBn lInAn/2 - Cnj pj(r)A1/ 2 + o(A" / 2 ) as A - o, (2.1)

here Cn,1 is a positive constant, depending only on n and 11, and /tH(I) denotes

the I-dimensional iausdorff measure of '.

Note that if r is sufficiently smooth then II = n - 1 and (2.1) reduces to

(1.6). However in general r is very irregular and hence II > n -1. Thus

Berry's conjecture seems a reasonable one. iiowcver in (1986) Brossard and

Carmona [4], through a series of illuminating examples, showed that (2.1)

cannot be true in general and proposed that the hlausdorff measure (dimension)

should be replaced by the less familiar Minkowski measure IL6 (dimension 6).

In order to understand recent contributions to the Weyl-Berry conjecture

we define the 1lausdorff and Minkowski dimension as follows:-
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Definition 2.1

Given d > 0, let 1d(A) -im I inf E ri, where the infimum is taken over
C-0 +  =l

all countable coverings of A by open balls {BiT= 1 of radius ri < c. The

number id(A) in [O,w) is called the d-dimensional Hausdorff measure of A and

11(A) = inf{d > O,Itd(A) = 0} = sup {d > O,Itd(A) = o} is called the llausdorff

Dimension of A.

Definition 2.2

Given c < 0 let r. = {x E Rn:d(x,r) _ e} be the c-neighbourhood of r.

For d > 0 let

td = ld(r) = im+ supe (n-d) Irwi (2.2)

C-io

be the d-dimensional upper Minkowski content of r. Then

D = D(r) = inf{d > Odid(r) = O

= sup{d ?O,/d(r) = oD}

is called the Minkowski dimension of r.

If o < #1D < o then r is said to be Minkowski measurable and /'D is called

the Minkowgki measure of r.

Examples

1. Let A be the set of rational numbers in [0.1], then 11(A) = 0 and D(A) = 1.
00

2. Let A be the set A = n Ki, where Ki is the union of 21 disjoint intervals
i=0'

of length ai such that ao = I and aii < ai/ 2 . Then

11(A) = lim inf log/• D(A) = lim log2'

i log(/ i-O sup log(l/ai)

If we have the classic 1/3-Cantor set then ai = 3-i and

11(A) = D(A) = log 2/log 3.



3. Lapidus [25]

Let a be an arbitrary fixed positive number and let 1 c Rn be the bounded

open set

il= U (Ii x J) where J = (0,1) n > 1il1

and
Ii -- ((i~lyfi)- i

Then

l(g) = n - 1 and D(fl) = n - I + (a+l) -1

4. Brossard-Carsona [4]

Let 9 c R2 be the countable disjoint union of all the small open cubes

belonging to the successive generations defined as follows:-

Let { P}i1= be a nondecreasing sequence of positive integers. The O-th

generation contains 1 square of side 1. The 1-st generation contains 4

squares each of side 1/3 and is divided into (P1)2 congruent small squares.

Similarly the i-th generation consists of 4x5 i-1 squares of side 3-i and is

divided into P? congruent small squares and so on.

Brossard and Carmona [4] show that irrespective of the sequence {Pi}

11(g?) = log 5/log 3. However if , for example, Pi = [ai] for same a > 1 and

where [ ] indicates "integer part of" then D(R) = log 5a2/log 3a.

it is known and of course clear from the above examples that I(A) 5 D(A).

More than this, examples 3 and 4 show that while II(A) is constant D(A) is

parameter dependent. The significance of this is that the Minkowski

dimension is more sensitive to the "roughness" of the boundary of P than is

the llausdorff dimension.

Returning now to our main theme regarding the Weyl-Berry conjecture

Lapidus and Fleckinger-Pelle [26] have proved
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Theorem 2.1

If 9 is bounded and if M is fractal with Minkowski dimension 6 E (n-1,n)

then

N(A) = (2,)-n BnIQInAn/ 2 + 0(A6/ 2) as A -4 c.

In addition this result has been extended by Lapidus [25] to more general

elliptic operators and to the Neumann boundary value problem. More recently

Fleckinger [10] has proved.

Theorem 2.2

If S1 is bounded and if OR is 6-Minkowski measurable with b-Minkowski

measure jt then
IN(A) - (2) -n Bn~~IgInAn/ 2 < C(n,6)#tA612 for all A _ Ao.

In order to give the reader an idea of the arguments used to establish

results such as Theorems 2.1 and 2.2 we outline the proof of the following

result concerning the asymptotics of the partition function Z(t) for fractal

domains in R2. This result is analagous to Theorem 2.2.

Theorem 2.3

If 0 C R2 is bounded and its boundary r is 6-Minkowski measurable with

b-Minkowski measure ji, then there exists a constant 7 depending on 6 so that

Z(t) = t- 6/2 for all t < t

In order to prove the theorem we need the following preliminary results.

(1) Dirichlet-Neumann Bracketing

Suppose 9 is a bounded open set in R2, let No(A,-AO) be the counting

function for the Dirichlet Laplacian on 9 and N1 (A,-A,fl) th counting function

for the Neumann Laplacian on f. Then it is well known (c.f. Courant and

llilbert [9]) that the following proposition holds.
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Proposition 2.1

If 01 c Q then

No(A,-A,fl) _ No(A,-A,91). (2.3)

if 9 1 and $2 are two disjoint open sets in 0 with Q9 = U 02 then

No(A,-A,01) + No(A,-h,2) _< No(A,-A,R)

< N(,Af ) (2.4)

< N1(A,-A,f1) + N1(A,-,l 2)

(2) Polygonal Domains

Proposition 2.2 [45]

Let

(i) D be a polygonal domain with boundary OD

(ii) PI"... Pn be the vertices of 8D and let W be the infinite wedge of

angle 7i with vertex Pi such that the boundary of the wedge contains

the two edges adjacent to Pi"

(iii) Define for y > 0, 7 = min 7i

Bi(y) = {A E Wild(A,Pi) < y}

1 n
R = - sup{ylBi(y) n Bj(y) = for all i # j, U B k(y) c D}

2 k=1
Then

7 2_. 2 (Rsin 7/2) 2IDI JODI n 7i ID! 1 e" (2.5)

1Z(t) - + 8(t)/ 2  E =15

Note [5] that a similar but less precise result holds for the "Neumann"

partition function together with a change of sign in the boundary term of

(2.5).

Outline of the Proof of Theorem 2.3

To begin with we introduce a positive number e such that for all

C E (o,60)
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-(2-)iQi2 2 (2.6)
i -Po

and choose Poe N such that 2- < C. In (2.6) we define!2
1= {x e R2Id(x,of) < e} (2.7)

where d(.,OQ) denotes the Euclidean distance to the boundary O.

For each integer p we consider a tecsellation of R into congruent

non-overlapping squares

p E Z2 with side = 2 (p+P°)

Define

A =CE Z IQc~1% C aA 0 Q0 A

fl" =f\o

A1 1 E Z2 1 c )1= no

Ap~ ~ 0 E ~2 C,_}a=a f

A{ Z p p l [n ip ]A p

We also define the boundary sets

Bp =(p E Z2 Q n O O,Q n a' = ,
p p

R = UQ .
P C1UEB~ p

We now make the following observations and estimates

01) all C R with ep = = 12.2 where R is defined by (2.7).
p p

Furthermore Rp c 0C
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